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Preface

We’re actually much better at planning the flight path of an interplanetary rocket
(rocket science) than we are at managing the economy, merging two corporations,
or even predicting how many copies of a book will sell (behavior prediction). So
why is it that rocket science seems hard, whereas problems having to do with
people - which arguably are much harder - seem like they ought to be just a
matter of common sense (easily predictable)? - Duncan J. Watts

Also,
If the brain were so simple we could understand (predict) it, we would be so
simple we couldn’t. - Emerson Pugh

But,
Nothing in Nature is random (unpredictable). A thing appears random only
through the incompleteness of our knowledge (ignorance). - Baruch Spinoza

While,
Ignorance is bliss. - Thomas Gray

but,
Timendi causa est nescire. (Ignorance is (also) the cause of fear.) - Seneca

And,
What would life be if we had (only fear and) no courage to attempt anything? -
Vincent Van Gogh

As a computer scientist working on problems related to human behavior, I

am often asked why I chose this particular domain. The questions come from

various perspectives - whether such problems are better suited for psychologists

and marketers, why these problems are interesting at all, whether human behavior

contains too much randomness to be mathematically tractable, if the problems are

ill-defined, and if they are even objectively solvable. For the ones interested in the

art of diction, I try to lay out my motivations in the quotes above. But for

others, I try to explain through a simple narrative and answer the questions more

scientifically in Chapter-1.
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Behavior is unsolved. Let me tell you a little story. Kelin is an eager advertiser

who releases a campaign on Facebook one Friday evening, paying $1000 to run an

ad across California. With each launch, she silently sends a prayer that the ad

resonates, draws clicks, leads to purchases of her product, ensures her campaign’s

success, and lands her the long-awaited promotion. Come Monday morning, Kelin

witnesses human behavior in all its varied glory (within the platform’s constraints,

obviously): she has received 28 comments on her post, 867 likes, 9045 views, 349

clicks, and 28 purchases. Satisfied but seeking improvement, she tweaks a few

words she feels might better appeal to Californians and relaunches. This time, her

metrics jump by 10.8%. Puzzled by the reasons, but pleased with the outcome,

she presses on.

From my perspective, Kelin and countless others like her are replicating what

the pioneering botanist Gregor Mendel did in the 1800s. The difference is that the

subjects for Mendel were peas and for Kelin, it is humans. Mendel was trying to

solve the puzzle of why some pea plants are tall and some small, some green while

some yellow, and some pea seeds round while some wrinkled. The modern-day

Kelins are trying to solve what makes people click, comment, like, and purchase,

why certain words perform better in California while others in Texas, how be-

havior can be modified, and so on. Mendel’s laboratory was his 2-acre Moravian

monastery farm. Kelin’s laboratory is the digital landscape of Facebook, Twitter,

YouTube, TikTok, Google, and her website.

Before Mendel, the general understanding of heredity was one of: Spontaneous

Generation (organisms could arise spontaneously from non-living matter), Lamar-

ckism (traits acquired by an organism during its lifetime could be passed on to

its offspring), Blending Inheritance (traits of offspring were a blend of the traits

of their parents), and Preformationism (miniature versions of organisms existed

within the reproductive cells of parents). Today, 150 years later, we know to a

very high degree of certainty, how traits in organisms arise and their mechanism

of inheritance, to the point that we can calculate the probability of a certain type

of rare cancer in the offspring of two given parents. However, Kelin’s problem of

who will click on her ad and how to maximize it remains unsolved and is often con-

sidered not worthy enough to be solved by science. Before the heroics of Mendel

and Darwin, even the science of heredity was considered a domain of philosophy
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and not worth the seriousness of science.

Rocket science is considered the hardest of sciences. It is solved. It is solved to

the extent that interplanetary launches over millions of kilometers can be planned

to an accuracy of a few meters. Yet human conduct stays inscrutable, quirky,

maddingly difficult to forecast and optimize for. It is unsolved to the extent that

even opinion polls conducted right before the day of the election give opposite

results to what is the actual outcome the next day. In my opinion, if behavior is

not the problem to be worth solving, then what is!
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Abstract

Communication, as a system of messages, symbols, and cultural exchanges, is ubiq-

uitous across all species. Scholars have argued that communication represents one

of the most transformative evolutionary transitions in life’s history (Smith and

Szathmary, 1997), alongside pivotal developments like chromosomal mechanisms,

eukaryotic formation, sexual reproduction, and multicellular life. Its unique ca-

pacity to enable cooperation and facilitate the unlimited transmission of cultural

information grants species an unprecedented form of adaptive flexibility (Kirby

et al., 2008).

Because of the critical role communication plays in the survival and advance-

ment of the species, communication has been studied since the ancient times. The

earliest known work on communication, called Precepts by Ptah-Hotep appeared

more than 4500 years ago (2̃300 BCE) (Gray, 1946). Since then, communication

has seen three distinct waves of intensified interest: the first one in Ancient Greece

with great Sophists like Aristotle, Isocrates, and Plato producing seminal works

like Rhetoric, Phaedrus, and Antidosis (Hackforth, 1972; Rapp, 2002; Norlin et al.,

1928), the second one with the rise of print, the reformation, the Renaissance, and

the European colonial pursuits (Mack, 2011), the third and most recent one dur-

ing the Second World War (Briñol and Petty, 2012). We currently stand at the

cusp of a fourth such phase, precipitated not by political upheaval (like the ideas

of democracy or world war) or mechanical innovation (like the printing press and

the steam engine), but by the unprecedented accumulation of digital content and

behavioral data. This data now serves as the foundation for developing large

language and diffusion models, which hold transformative potential for behav-

ioral scientific inquiry. We will show in this thesis that these tools, while still in

their infancy, have the potential to solve many problems considered ambitious in

behavioral sciences.

Communication is composed of seven modalities: the communicator, message,
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channel, time of receipt, receiver, time of behavior, and receiver’s behavior (Shan-

non and Weaver, 1949; Lasswell, 1948, 1971). Critically, each communication

turn’s behavior becomes the subsequent turn’s message, rendering communication

a strategic interaction between sender and receiver aimed at optimizing shared or

individual objectives (Smith and Harper, 2003). Examples like legal defense and

prosecution, scientific discourse, mating, organizational communication, diplo-

macy, political propaganda, and culture (like folk songs and maxims), present

different types of goals.

This thesis explores behavioral sciences’ enduring mission—first articulated by

Aristotle 2,500 years ago—of identifying and leveraging persuasive mechanisms

(Rapp, 2002). The field has traditionally bifurcated into two epistemological

approaches: explanation and prediction. Historically, behavioral scientists have

sought explanations that can provide interpretable causal mechanisms behind hu-

man and societal functioning. However, societies and humans do not render them-

selves to clean-cut equations and formulas, as is evidenced by the limited success

of behavioral explanations in predicting behavior. The emergence of extensive

digital behavioral repositories has consequently shifted focus towards more robust

predictive methodologies.

In this thesis, we start with the more traditional approach of behavior expla-

nation, where we cover persuasion strategies in advertising images and videos. We

construct the largest set of generic persuasion strategies based on theoretical and

empirical studies in marketing, social psychology, and machine learning literature.

We introduce the first dataset for studying persuasion strategies in advertisements.

Further, we also introduce methods called universal adversarial triggers to mine

behavioral models to understand what they learn. While persuasion strategies

help a human correlate and understand content and behavior, universal adversar-

ial triggers help understand what models learn, which makes them successful in

predicting behavior.

Next, we turn attention towards behavior prediction by constructing general

behavior models. These models, similar to large language models, aim to under-

stand behavior in general, as opposed to designed for a specific behavioral task.

We use the large repositories of digital analytics to train these models. The format
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of this data is the general communication model consisting of the communicator,

message, time of message, channel, receiver, time of effect, and effect. We call

these models, Large Content and Behavior Models (LCBMs). We further show

that large language models, while being used as general purpose models for a va-

riety of tasks in different domains, are unable to solve behavioral problems. We

investigate the reason for this and find that while training LLMs, behavioral data

is removed as noise due to which they lose the behavioral capabilities.

We also show that after including the behavioral training data back leads to

other positive side effects. Namely, we show that since behavior is an after effect

of content (message), therefore, we can make inferences about content by looking

at the receiver behavior. An example for this is blood pressure or eye dilation

levels upon watching the movie Jurassic Park indicates the excitement level of

different scenes. We show results for this hypothesis on more than 40 content

understanding tasks across all four modalities of text, image, video, and audio.

Finally, we make initial strides towards solving the problem of generating per-

formant content. We show this both for performant text generation, by taking

the illustrative case of the behavior of memorability, and images, by generating

images that are more engaging. We also develop mechanisms to measure the en-

gagement potential of text to image generation models. We show that existing

metrics to benchmark the quality of text to image generation models are not corre-

lated with engagement. We develop a model to measure the engagement potential

of an image. We release the first automated arena to benchmark the engage-

ment of text-to-image models. We rank several popular text-to-image models on

their ability to generate engaging images and further encourage the community to

submit their models to the arena.
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Chapter 1

What is Behavior? Introducing The Two

Cultures of Behavioral Sciences

Figure 1.1: Communication process can be defined by seven factors: Communica-
tor, Message, Time of message, Channel, Receiver, Time of effect, and
Effect. Any message is created to serve an end goal. For marketers,
the end goal is to bring in the desired receiver effect (behavior) (like
clicks, purchases, likes, and customer retention). The figure presents
the key elements in the communication pipeline - the marketer, mes-
sage, channel, receivers, and finally, the receiver effect.

Behavior as a modality* occurs in the process of communication. Communica-

tion includes all of the procedures by which one mind may affect another (Shannon

and Weaver, 1949). This includes all forms of expression, such as words, gestures,

speech, pictures, and musical sounds. Communication can be seen as being com-

posed of seven modalities (Fig. 1.1): (the communicator, message, time of message

(or time of receipt), channel, receiver, time of effect, and effect).

The seven modalities of communication interact in different ways depending

on the context. We illustrate this with four examples:
*A modality is defined in terms of information, such that a modality is a medium through

which information is conveyed (Liang et al., 2022; Grifoni, 2009; Martin et al., 2001). Similarly,
a multimodal distribution is defined as having more than one peak in the probability distribution
describing the nature of information.



Figure 1.2: Interaction of the communication modalities in a mass communication
scenario like a speech.

1. Mass Communication, such as a Speech: In mass communication,
the communicator might be an individual—like a CEO or politician—or an
organization, such as a media outlet or political party. The message is the
content being conveyed, while the channel refers to the medium through
which it is delivered (e.g., radio, television, or the internet). The receiver is
the audience, the time of effect is when the audience receives the message,
and the effect is their subsequent behavior.
Fig. 1.2 illustrates how the seven modalities interact in the context of a
speech. The communicator typically controls three key factors: the message,
the channel, and the timing of the message. These choices are influenced by
the communicator’s goals, the characteristics and constraints of the chosen
channel, and the relevance of the timing.
For example, a politician giving a speech on ”Artificial Intelligence” might
tailor their message depending on whether it’s broadcast over public radio
or delivered live at a rally. Likewise, the timing can shape the content: a
speech delivered near Independence Day might include different themes than
one given around New Year’s.
The time of effect is when the audience engages with the message—often si-
multaneous with its delivery in live communication. The audience’s behavior—
the ultimate effect—is shaped by the message, the channel, the timing, the
communicator, and their own characteristics as receivers.
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Figure 1.3: Interaction of the communication modalities in a mass communication
scenario on a social media platform like Twitter.

2. Social Media: In mass communication via social media, the communicator
can be an individual (such as a journalist, influencer, or politician) or an
organization (like a news outlet or a company). The message represents
the content being shared, while the channel refers to the medium—such as
Twitter, Facebook, or another social media platform.
Fig. 1.3 illustrates how the seven modalities interact in the context of a
tweet. Unlike traditional speeches, social media communication has an asyn-
chronous nature. The communicator still controls three key factors: the
message, the channel, and the timing of the message. However, the reach
and effect of the message can be influenced by platform (channel) algorithms
and the content.
For example, a tech company announcing a product launch on Twitter might
craft the message differently than if they were making a live keynote speech.
The choice of timing is also crucial—posting during peak engagement hours
may enhance visibility.
The time of effect is when the audience engages with the message, which
may not be immediate, as tweets can be shared and rediscovered over time.
The ultimate effect on the audience—whether it be a change in opinion,
an action taken, or a broader societal reaction—depends on factors such
as the communicator’s credibility, the content’s relevance, and the digital
platform’s dynamics.

3



Figure 1.4: Interaction of the communication modalities in a person-to-person
communication scenario on a channel like Whatsapp.

3. In peer-to-peer (P2P) communication, two individuals engage in direct ex-
changes, typically through mutually agreed-upon channels such as messaging
apps (e.g., WhatsApp, Signal), emails, or phone calls. Unlike mass commu-
nication, where the communicator chooses the audience, in P2P communi-
cation, the sender does not determine the receiver—the interaction occurs
only when both parties establish a connection, such as exchanging contact
information or joining the same platform.
Fig. 1.4 illustrates the interaction of seven key modalities in a P2P commu-
nication setting. The channel is chosen by mutual agreement between the
sender and receiver, based on factors like convenience, urgency, and formal-
ity. The message is shaped by the sender’s intent channel. The time of effect
depends on when the receiver reads and processes the message, which may
vary based on availability and responsiveness, and also the message content,
and when the message was sent.
Unlike mass communication, P2P messaging typically has a controlled ef-
fect, as it is intended for a specific recipient. However, the effectiveness of
the message depends on the communication, timing, the receiver’s interpre-
tation, the sender, and the channel.

4. The next setting is a continuation of the previous one, where the commu-
nicator and receiver swap their roles. The channel remains the same. The
effect of the previous iteration becomes the message of the next iteration,
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Figure 1.5: Interaction of the communication modalities in person-to-person com-
munication with bidirectional communication.

with its target receiver as the communicator of the previous iteration. The
new receiver’s effect follows the same dependencies as the last iteration,
namely, the new message, the time of the new message, the time of the new
effect, the new communicator and the receiver, and the channel. Fig. 1.5
presents this case.

These modalities can vary independently of each other (Khandelwal et al.,

2024; Khurana et al., 2023; SI et al., 2025; Khurana et al., 2024) and carry signals

about each other (Khurana et al., 2023; Bhattacharyya et al., 2023). The message

as a modality carries information from the communicator to receiver and encodes

information generated by the communicator. Similarly, behavior (aka effect) as a

modality carries information from the receiver and encodes information generated

by the receiver. This is often a continuous cycle, where behavior generated in the

previous cycle becomes the message of the next cycle, thus forming a (continuous)

conversation.

Different fields of behavioral sciences deal with different parts of behavior. we

will give a broad overview of these fields in the upcoming paragraphs, but two

streams have emerged broadly in behavioral sciences: explanation and prediction

of behavior (receiver effect) (Breiman, 2001; Hofman et al., 2017; Shmueli, 2010).

Historically, behavioral social scientists have sought explanations of human
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behavior that can provide interpretable causal mechanisms behind human func-

tioning. A few prominent examples are Milgram’s (Milgram and Gudehus, 1978)

and Asch’s (Asch, 1948) experiments on persuasion, explaining the causal mech-

anism of obedience to authority. Similarly, Cialdini’s (?) identification of six

principles of persuasion (reciprocity, commitment/consistency, social proof, au-

thority, liking, and scarcity) provides a theoretical framework that explains why

certain messaging strategies are effective. In economics, prospect theory by Kah-

neman and Tversky (?) explains how people make decisions under uncertainty by

identifying cognitive biases like loss aversion and the endowment effect.

The approach of theorizing has worked remarkably well in physical sciences

where the data is plentiful, and theories make unambiguous predictions. For in-

stance, Newton’s laws of motion precisely predict planetary orbits, allowing us

to calculate exactly when Halley’s comet will return (every 76 years). Einstein’s

theory of relativity predicted the bending of light around massive objects, which

was empirically confirmed during the 1919 solar eclipse. In chemistry, the periodic

table not only organized known elements but successfully predicted the proper-

ties of undiscovered elements like gallium and germanium. Similarly, Maxwell’s

electromagnetic theory predicted the existence of radio waves decades before they

were experimentally demonstrated by Hertz.

However, such theoretical success has not been replicated in predicting social

outcomes in behavioral sciences (Collaboration, 2015; Tetlock, 2017; Collaborative,

2023). Unlike physical phenomena where F=ma reliably predicts motion, human

behavior is far more complex and context-dependent. For example, while Cialdini’s

persuasion principles explain why authority figures influence behavior, they cannot

predict with Newton-like precision whether a specific endorsement will increase

sales by 15% or 50%. In fact, many studies have shown that expert human opinions

fare similar to non-experts (e.g., predicting economic and political trends (Tetlock,

2017), societal change: (Collaborative, 2023), and advertising success: (Singh

et al., 2024b)), and the opinion of non-expert population is roughly the same as a

random coin toss in predicting behavior (e.g., predicting cascades (Tan et al., 2014)

or image memorability (Isola et al., 2013)). At the same time, causal mechanisms

proposed by experts and theorists have their own merits; most notably, they help

decision-makers (often humans) to make intuitive sense of the situation and make
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their next decision based on it.

In parallel, due to the availability of human behavior data at scale, researchers

in machine learning are showing a growing interest in traditionally behavioral

science topics, such as messaging strategies leading to persuasion (Habernal and

Gurevych, 2016; Kumar et al., 2023a; Luu et al., 2019; Bhattacharyya et al., 2023),

information diffusion (Cheng et al., 2014a; Martin et al., 2016), and prediction and

predictability of human behavior (Choi and Varian, 2012; Song et al., 2010). This

prediction-oriented approach mirrors the success of machine learning in other do-

mains. For example, in computer vision, deep learning models can classify images

with superhuman accuracy (achieving 97.8% accuracy on ImageNet compared to

human performance of 94.9%) without necessarily understanding why an image

contains a particular object. Similarly, in natural language processing, BERT and

GPT models achieve remarkable performance on language tasks through pattern

recognition in massive datasets, even though they lack explicit understanding of

grammar rules or semantic theories. In recommender systems, collaborative fil-

tering algorithms successfully predict user preferences (Netflix’s recommendation

system was estimated to save the company $1 billion annually) by finding patterns

in user behavior data, without needing to understand the psychological mecha-

nisms behind why users like certain content.

In the prediction community, different subfields have emerged dealing with the

different parts of the problem of optimization of human behavior. For instance,

advertisement personalization studies how to optimize (choose) receiver for a given

message (Chandra et al., 2022), and recommendation systems study how to choose

content from a set of pre-decided contents for a given receiver to elicit a certain

effect (Herlocker et al., 2004). A popular problem within the prediction commu-

nity is the effect prediction problems, for example, clickthrough (CTR) prediction

(McMahan et al., 2013), Twitter cascade prediction (Cheng et al., 2014a; Mar-

tin et al., 2016), sales prediction (Choi and Varian, 2012; Pryzant et al., 2017),

content memorability prediction (Isola et al., 2011; Khosla et al., 2015; SI et al.,

2025), etc. There are also works to optimize the time of the message to elicit

certain effect (Newstead and Romaniuk, 2010; SI et al., 2025). Some of the ma-

jor problems studied in behavioral sciences are given below. Through this list,

one can observe that all the factors of communication are studied independently
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in their own light without relying on the underlying unity and continuity of the

communication process.

1. Problems related to optimization in the sender space:
(a) Source Optimization: Who should send a particular message over a

channel to a specific audience to get the desired behavior? This includes
selecting between different brand voices, influencers, spokespersons, or
organizational entities based on authority, trustworthiness, and audi-
ence affinity.

2. Problems related to optimization in the receiver space:
(a) Personalization: Identifying the optimal receiver for a specific content-

channel-time combination to maximize engagement and conversion prob-
ability.

(b) Customer Segmentation: Strategic division of the customer base
into distinct, actionable groups based on shared characteristics, be-
haviors, or value propositions to enable differentiated marketing ap-
proaches.

(c) Social Network Analysis: Modelling the interconnectedness of re-
ceivers (and senders) together in a graph to describe social phenomena
like contagion and homophily.

(d) Lookalike Modeling: Identifying and targeting prospective customers
who share similar characteristics, behaviors, and propensities with ex-
isting high-value customers or target audiences.

(e) Market surveys: Systematic collection and analysis of primary data
about target markets, customer preferences, and competitive landscape
to inform marketing decisions.

(f) Identity stitching: Probabilistic and deterministic matching of cross-
channel, cross-device customer actions to create unified customer pro-
files and journey maps.

(g) Behavior Explanation: Discovering causal mechanisms behind a re-
ceiver action.

3. Problems related to optimization in the content space:
(a) Recommender Systems: Identifying the optimal content that should

be delivered next to a certain receiver given a fixed channel, time, and
a repository of contents (and their corresponding senders).

(b) A/B Testing: A randomized experiment involving two or more vari-
ants with the goal of discovering which variant of a message performs
better with a certain audience.

(c) Customer Targeting: Determining what message should be deliv-
ered to a target audience segment, targeted based on multi-dimensional
attributes (geographic, demographic, behavioral, and psychographic)
through particular channels.

(d) Propensity Modelling or Engagement Modelling: Modeling prob-
ability of engagement in terms of actions like Clickthrough, social me-
dia actions such as likes and shares for a certain audience, sender, and
campaign.
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(e) Transsuasion: Conversion of a content from low-performing to high-
performing for a given audience, sender, and time, while maintaining
the content’s intent, style, and emotional impact.

(f) Transcreation: Conversion of a content designed for one audience
(like a particular culture) to another audience, while maintaining the
content’s intent, style, and emotional impact.

(g) Search Engine Optimization: Improving the quality and quantity
of website traffic to a website from search engines by doing content
optimization (like adding keywords, backlinks, etc).

(h) Performant Content Generation: Generate content that can per-
form better for a given audience, sender, time, and goal.

(i) Argument Mining: Automatic extraction and identification of argu-
mentative structures from natural language text.

(j) Persuasion Strategies: Use of rhetorical devices (such as emotion,
social identity, and scarcity) to optimize the effect of a message on a
certain audience.

4. Problems related to optimization in the channel space:
(a) Channel Optimization: Optimizing channels for a particular audi-

ence, sender, time, and goal.
(b) Marketing Mix Modeling: Measuring and attributing the impact

of various decisions like channel investments, discounts, promotional
campaigns in their contribution to engagement and sales.

(c) Auction Design and Bidding: Mechanisms to discover the cost of at-
tention of a certain receiver to a particular sender, time, and campaign
goal.

5. Problem related to optimization in the time space:
(a) Send Time Optimization: Determining the optimal timing for mes-

sage delivery for a certain receiver, sender, content combination.
(b) Trend Forecasting: Projecting marketing and social trends in the

future.

A common theme that runs through behavioral sciences is the intent to control

behavior. For example, marketers want to increase click-through rates from 2% to

5%, political campaigns aim to boost voter turnout by 15%, and content creators

seek to double their video engagement metrics. From this intent, explanation

and prediction serve as intermediate steps toward control and optimization. For

instance, understanding why certain ad formats generate higher conversion rates

(explanation) enables predicting which content will perform best (prediction), ul-

timately allowing marketers to systematically increase sales by 20-30%.
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Optimizing behavior means fulfilling the communicator’s objectives by strate-

gically controlling the other six parts of the communication process (Fig. 1.1): se-

lecting the right spokesperson (communicator), crafting compelling messages (con-

tent), choosing optimal platforms (channel), timing releases strategically (time),

targeting specific audiences (receiver), and measuring outcomes (effect). However,

current approaches are fragmented—a model trained to predict Twitter engage-

ment cannot predict YouTube video views, and an advertising optimization system

for fashion brands fails when applied to food products. Due to this limitation, the

solution requires a general understanding of human behavior that can transfer

across domains, platforms, and contexts. In this thesis, our aim is to develop such

models that can understand behavioral patterns universally, whether predicting

social media engagement, optimizing email marketing campaigns, or improving

video content retention rates.

The characteristic that marks the digital age is the prevalence of human behav-

ioral data in huge repositories. This data is big (allowing to model heterogeneity),

always-on (allowing to look in the past as well as live measurements), observa-

tional (as opposed to reactive), but also incomplete (does not capture all that is

happening everywhere everytime in a single repository) and algorithmically con-

founded (generated as a byproduct of an engineering process with a goal) (Salganik,

2019). While the predictive culture has tried to make use of some of this data in

the form of social media datasets like Twitter (Tumasjan et al., 2010; Asur and

Huberman, 2010) and Instagram (Kim et al., 2020), Google trends (Choi and Var-

ian, 2012; Carrière-Swallow and Labbé, 2013), Wikipedia (Generous et al., 2014;

De Toni et al., 2021; Mestyán et al., 2013), shopping websites (Krumme et al.,

2013; De Montjoye et al., 2015) and other data sources (Brockmann et al., 2006;

Song et al., 2010; Miritello et al., 2013), these efforts are limited, in the sense of

being dependent on one or a few chosen platforms, able to answer a limited set

of questions, and restricted by access to private data. We want a model that can

understand (predict and explain) human behavior in general as opposed to model-

ing a particular effect (retweet prediction) on a particular platform (e.g. Twitter)

for a certain type of users. This problem carries parallels with the problem being

solved in the natural language processing (NLP) community, where supervised

models in NLP are limited by the amount of supervision available and being able
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to answer one question (for which the supervised model was trained). The prob-

lem was solved by developing Large Language Models (LLMs), which are general

purpose models capable of understanding language, and hence can solve natural

language tasks like sentiment analysis, question answering, email generation, and

language translation in zero-shot (i.e. without needing any explicit training for

that task) (Devlin et al., 2019; Brown et al., 2020; Radford et al., 2018; Raffel

et al., 2020; Radford et al., 2019).

Figure 1.6: Levels of content analysis. The figure lists tasks and their sample
outputs arranged in a hierarchy (Shannon and Weaver, 1949). This
is roughly based on levels of language. Notably, humans are good at
predicting the first three levels but not the last level (Tetlock, 2017;
Collaborative, 2023; Tan et al., 2014; Isola et al., 2013).

Similarly, how do we develop a model capable of understanding behavior in

general? With the intent to answer this question, we take motivation from LLMs,

where the idea is to train a model on a data-rich task. The task chosen to train

LLMs is the next-word prediction, and the dataset is the text collected from the

entire internet. The next-word prediction task is a data-rich task that can be

trained on the huge text repositories from the internet. The intuition is that two

approaches have always worked for neural networks: larger model sizes and more

data for training (Mikolov et al., 2013; Devlin et al., 2019; Radford et al., 2018;

Raffel et al., 2020). Going from a few million tokens of text (Mikolov et al., 2013;

Radford et al., 2018) to a trillion tokens (Touvron et al., 2023; Brown et al., 2020)

leads to an increase in the transfer learning capability leading to performance

improvements over a wide variety of natural language tasks.

The digital revolution has provided us with huge repositories of data. We

leverage the human behavior repositories available on the internet for this general-

purpose human behavior model. The format of this data is the general commu-

nication model shown in Fig. 1.1 consisting of communicator, message, time of

message, channel, receiver, time of effect, and effect. Due to the incomplete na-

ture of behavioral repositories, all the factors are usually not always available.
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However, a subset is always available, and we show that the data scale, along with

a large model, helps make a general behavior understanding model (Khandelwal

et al., 2024). We call this model, Large Content and Behavior Model (LCBM).

We show that LCBM can predict behavior, explain it, and generate a message to

bring about certain behavior (SI et al., 2025; Khandelwal et al., 2024; Khurana

et al., 2024).

Are general LLMs unable to solve behavioral problems? A question that arises

is whether LLMs, which already learn trillions of text tokens, are able to un-

derstand and predict behavior. We investigate that question over several large

models, including GPT-3.5 (Brown et al., 2020), GPT-4 (OpenAI, 2023), Llama-

13 B and LLama-7B (Touvron et al., 2023), and find that they are unable to

solve the behavioral problems listed before. The reason for this is that large lan-

guage models only include one factor (message) out of the 7-factor communication

model (Fig. 1.1) while considering other parts as “noise” (for instance, see (Bider-

man et al., 2022; Penedo et al., 2023)). This systematic purge of communicator,

receiver, channel, time, and, most importantly, behavior causes the models not

to develop any behavioral capabilities (Level-C of Shannon and Weaver (Shan-

non and Weaver, 1949)). As an example, Llava (Liu et al., 2023a), a recent large

language and vision model (VLM) trained by connecting a vision encoder with a

language model, shows that after training on a few hundred thousand instructions,

the language model can now “see”, and is able to answer questions on the images.

However, the questions all lie in the first two levels of content analysis shown in

Fig. 1.6. The reason is that the instructions used to align the image encoder with

the downstream LLM all lie in the first two levels (sender and message) while ig-

noring the last two (receiver and behavior). In the upcoming chapters, we explore

how we can train a general behavior model and how including the other factors of

communication back in training data helps in understanding human behavior.

Outline for the upcoming chapters: Following the two traditions of behavioral

sciences, we delve into both explanation and prediction. Figure 1.7 gives a visual

description of the various chapters and how they link with each other. In Chapter-

2, we start with a more traditional approach to behavior explanation, where we

cover the first works on extracting persuasion strategies in advertisements (both

images and videos) (Kumar et al., 2023a; Bhattacharyya et al., 2023). The con-

12



Receivers: 
College Students

Channel:
Email

Content

Receiver Effect:
Email Open: 38k

Clicks: 5k
Purchases: 1k

Understanding

Understanding behavior via content:
Persuasion Strategies and 

 Universal Adversarial Triggers (Chapter-2)

Prediction

Understanding content via behavior:
Behavior-LLaVA (Chapter-3) 

ScantextGAN (Chapter-3)

Behavior Prediction based on content
LCBM (Chapter-4)

Content Generation based on behavior
Henry (Chapter-5)
EOIG (Chapter-5)

Behavior

Speaker

Figure 1.7: Communication process can be defined by seven factors: Communica-
tor, Message, Time of message, Channel, Receiver, Time of effect, and
Effect. Any message is created to serve an end goal. In this thesis, we
explore the two main concerns of behavioral sciences: understanding
(or explanation) and prediction. The figure shows the links between
the different chapters and how they link together to form the two core
pillars of understanding and explanation.

tributions of these works include constructing the largest set of generic persuasion

strategies based on theoretical and empirical studies in marketing, social psychol-

ogy, and machine learning literature and releasing the first datasets to enable the

study and model development for the same. These works have been deployed to

understand the correlation between the kinds of marketing campaigns and cus-

tomer behavior measured by clicks, views, and other marketing key performance

indicators (KPIs). Further, we also introduce methods called universal adversarial

triggers (UATs) to mine behavioral models to understand what they learn. This

approach provides a converse approach for human behavior understanding. While

persuasion strategies help a human correlate and understand content (message)

and behavior, universal adversarial triggers help understand what models learn,

which makes them successful in predicting behavior.

Following this, in Chapter-3, we delve into the question of modeling behav-

ior. The key insight behind this chapter is that behavior is always produced by

a receiver in response to a content sent by a sender at a time. We model be-

havior together with the pieces of sender, receiver, time, and content. We show

that while large language models already model content, they do not model the
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other pieces of sender, receiver, and time. We model these factors together and

show emergent abilities in understanding behavior. We observe that teaching the

Large Content and Behavior Models (LCBM) behavior and content simulation

improves its capabilities on them (expected), but the model also shows signs of

domain-adaptation in behavior modality (few-shot capability, unexpected) and

improvements in behavior understanding (zero-shot capability, unexpected). To

spur research on the topic of large content and behavior models, we release our

generated behavior instruction fine-tuning data from over 40,000 public domain

YouTube videos and 168 million Twitter posts. The data contains: 1) YouTube

video links, automatically extracted key scenes, scene verbalizations, replay graph

data, video views, likes, comments, channel name, and subscriber count at the

time of collection, and 2) Twitter extracted account names, tweet text, associated

media (image and video) verbalizations (including image captions, keywords, col-

ors, and tones), tweet timestamps, and like counts. We also release a benchmark

to test performance on the joint content behavior space introducing two types of

tasks in this space: predictive and descriptive. In the predictive benchmark, we

test the model’s ability to predict behavior given the content and predict content

given the behavior. In the descriptive benchmark, we validate its explanation of

human behavior by comparing it with ground-truth annotations we obtain from

human annotators that try to explain human behavior.

Next, in Chapter 4, we analyze the communication process in more detail. As

behavior is the signal a receiver emits when a sender sends a content; similarly,

one can see this behavior emitted as a content in the next cycle, where the re-

ceiver becomes the sender, and the sender becomes the receiver. Therefore, we

ask if we can understand the content better by modeling behavior. For example,

a person’s heightened state of emotional response, like dilated pupils and sweat,

while watching an action scene from the movie Jurassic Park gives us much in-

formation about the scene itself. Today’s models are built only on content (the

Jurassic Park movie itself) while ignoring the human behavioral responses over

the content. Behavioral responses like likes, shares, comments, replay graphs,

and upvotes are freely available and waiting to be integrated into the workflow to

understand content better. We show evidence for this hypothesis by improving

LLMs across 46 different tasks over 23 benchmark datasets across all four modal-
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ities of language, audio, text, and video. The hypothesis of extracting and using

signals from behavior is lately getting attention in the fields of human alignment

and reinforcement learning with human feedback (RLHF) where researchers try

to use human behavioral signals of likes, upvotes, and annotations of a response’s

helpfulness to improve content generation (Kreutzer et al., 2018; Stiennon et al.,

2020; Ziegler et al., 2019; Nakano et al., 2021; SI et al., 2025; Lee et al., 2023; Wu

et al., 2023b; Khurana et al., 2024, 2023). In our work, we propose a scalable ap-

proach to increase the content understanding abilities of VLMs, requiring minimal

cost and no architectural changes.

Communication serves as a fundamental mechanism for achieving shared goals

between senders and receivers (Smith and Harper, 2003). Humans possess a re-

markable capacity to cooperate with strangers, enabled by language that has al-

lowed our ancestors to exchange information, resolve conflicts, and create shared

constructs like fictions, social structures, and cultural frameworks (Misyak et al.,

2016; McCroskey, 2015; Smith and Szathmary, 1997). This ability emerges early in

human development, with children demonstrating communication and persuasion

skills from a young age (Perner and Wimmer, 1985). Notably, strategic communi-

cation extends beyond human species, manifesting in both conspecific (Hare et al.,

2000; Smith and Harper, 2003) and interspecific (Krebs and Dawkins, 1984; Fouts

et al., 2002) interactions. A compelling example is the ”broken wing display” ob-

served across various bird genera, where adults feign injury to appear vulnerable,

strategically luring predators away from their offspring (Griffin, 2001). Building

on this foundation of strategic communication, the final chapter of this thesis

(Chapter-5) demonstrates how modeling the complete communication workflow

enables the generation of messages designed to elicit specific behavioral outcomes.

We explore this concept across two modalities:

1. Text Domain: Through the illustrative case of memorability, we develop
methods to generate content that demonstrates enhanced long-term reten-
tion (SI et al., 2025).

2. Visual Domain: We advance techniques for generating images that achieve
higher performance metrics, specifically focusing on engagement through
social media likes (Khurana et al., 2024).

In addressing these challenges, we make several key contributions: First, we in-
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troduce UltraLAMBDA, the first large-scale advertisement dataset, comprising 5

million ads with automatically extracted content labels, including ASR transcrip-

tions, captions, OCR text, emotion indicators, and memorability scores assigned

by our model. Our analysis reveals that current large language models (LLMs)

like GPT-3.5 and GPT-4 struggle to generate inherently memorable content. In

response, we developed Henry, which demonstrates a 44% average improvement

in memorability scores through progressive generation techniques. This work rep-

resents the first successful application of synthetic data to a domain previously

lacking large-scale training resources.

Second, we address the critical need for engagement-optimized image gen-

eration, particularly relevant to industries such as advertising, fashion, and e-

commerce, where user engagement metrics (clicks, likes, purchases) directly mea-

sure success. We present EngagingImageNet, a comprehensive dataset containing

168 million tweets collected from 10,135 enterprise accounts (2007-2023). This

dataset includes rich metadata: account information, tweet text, media content,

image captions, keywords, color analysis, posting timestamps, and engagement

metrics.

Our analysis reveals that traditional image generation metrics (fidelity, aes-

thetics) show no correlation with actual engagement. To bridge this gap, we de-

veloped EngageNet, an engagement-aware vision language model (VLM) capable

of predicting user engagement levels for images. Building on EngageNet’s capabil-

ities, we release Engagement Arena, the first automated benchmark for assessing

the engagement potential of text-to-image models. This platform not only enables

systematic comparison of existing models but also provides an open framework for

the research community to evaluate and improve engagement-oriented image gen-

eration techniques.

1.1 Research Questions and Thesis Contributions

This thesis addresses a fundamental challenge in behavioral sciences: the fragmen-

tation between explanation-focused and prediction-focused approaches to under-

standing human behavior. Current methods are limited in scope—models trained

16



for specific platforms, domains, or behavioral outcomes cannot generalize across

different contexts. Our central research question is:

How can we develop general-purpose models capable of understand-

ing, predicting, and optimizing human behavior that transfer across

domains, platforms, and contexts?

This overarching question leads to several specific research questions that guide

our investigation:

1. Explanation: How can we systematically extract and understand the mech-
anisms behind human behavioral responses to content? What strategies and
triggers influence behavior, and how can we make these mechanisms inter-
pretable to human decision-makers? We address this by constructing com-
prehensive taxonomies of persuasion strategies from theoretical literature,
developing automated extraction methods for advertisements across image
and video modalities, and introducing universal adversarial triggers (UATs)
to probe what behavioral models learn, making their decision processes in-
terpretable.

2. Prediction: How can we build models that predict human behavior by
jointly modeling content and behavioral responses? What happens when we
train models on the complete communication process rather than isolated
components? We develop Large Content and Behavior Models (LCBM)
that jointly model all seven communication factors, demonstrate emergent
few-shot and zero-shot capabilities, and show that behavioral instruction
fine-tuning on large-scale datasets leads to domain adaptation and improved
generalization across platforms and contexts.

3. Understanding: Can information present in one modality (viz., behavior)
improve information extraction of another modality (viz., content)? How can
we leverage human behavioral responses (likes, shares, engagement patterns)
to enhance models’ comprehension of content across different modalities?
We systematically integrate behavioral signals into content understanding
pipelines, demonstrating improvements across more than 50 tasks spanning
more than 25 benchmark datasets in text, audio, image, and video domains
through scalable approaches.

4. Generation: Can we change one modality (viz., content) to control an-
other modality (viz., behavior)? How can we generate content optimized
for specific behavioral outcomes? Specifically, can we create memorable ad-
vertisements, engaging social media posts, or persuasive communications by
understanding the content-behavior relationship? We develop progressive
generation techniques for memorable text content, create engagement-aware
vision-language models for image generation, and establish automated eval-
uation frameworks that measure content effectiveness based on predicted
behavioral outcomes rather than traditional aesthetic metrics.

Our work makes several key contributions across four main areas:
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Interpretable Behavior Analysis:
• We construct the largest taxonomy of persuasion strategies grounded in mar-

keting and psychology literature, enabling systematic analysis of behavioral
mechanisms across visual and textual content.

• We introduce universal adversarial triggers as a novel method for probing
behavioral models, making their learned representations interpretable to hu-
man decision-makers.

Behavioral Modality Integration:
• We demonstrate that behavioral signals can serve as a universal modality

and a core modality which always occurs together with content. We show
that by understanding the behavior modality, we can improve content under-
standing; we show consistent improvements across diverse tasks in natural
language processing, computer vision, and multimodal domains.

• We develop scalable methods for integrating human behavioral responses
(gaze patterns, engagement metrics, social signals) into existing model ar-
chitectures without requiring significant computational overhead.

Joint Content-Behavior Modeling:
• We show that jointly modeling content and behavioral modalities leads to

emergent capabilities including few-shot behavior prediction, zero-shot do-
main adaptation, and improved generalization across platforms and con-
texts.

• We release comprehensive datasets spanning social media posts, video con-
tent, and advertisement corpora to enable systematic research in content-
behavior relationships.

Behavior-Optimized Content Generation:
• We develop the first systematic approaches for generating content optimized

for specific behavioral outcomes, including memorable advertisements and
engaging visual content.

• We establish automated evaluation frameworks that assess content effec-
tiveness based on predicted behavioral responses rather than traditional
aesthetic or linguistic metrics.

• We demonstrate that synthetic content generation can be successfully ap-
plied to domains with limited training data by leveraging behavioral under-
standing.

Through this work, we aim to move beyond fragmented, platform-specific so-

lutions toward a general understanding of human behavior that can be applied

across diverse contexts, ultimately enabling more effective communication and

content optimization.

Therefore, we will cover explanation, analysis, prediction, and generation as-

pects of behavior. We will cover the following works in this thesis:
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1. MINIMAL: Mining models for data-free universal adversarial triggers. AAAI,
2022, (covered in Chapter-2)

2. Persuasion Strategies in Advertisements, AAAI, 2023, (covered in Chapter-
2)

3. A Video Is Worth 4096 Tokens: Verbalize Videos To Understand Them In
Zero Shot, EMNLP, 2023, Nominated for best paper award (covered in
Chapter-2)

4. Large Content And Behavior Models To Understand, Simulate, And Op-
timize Content And Behavior, ICLR, 2024, Nominated for best paper
award (covered in Chapter-3)

5. Synthesizing Human Gaze Feedback for Improved NLP Performance, EACL,
2023 (covered in Chapter-4)

6. Teaching Human Behavior Improves Content Understanding Abilities Of
VLMs, ICLR, 2025 (covered in Chapter-4)

7. Long-Term Ad Memorability: Understanding and Generating Memorable
Ads, WACV, 2025 (covered in Chapter-5)

8. Measuring And Improving Engagement of Text-to-Image Generation Mod-
els, ICLR, 2025 (covered in Chapter-5)
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Chapter 2

Explaining Behavior: Persuasion Strategies and

Universal Adversarial Triggers

Modeling what makes an advertisement persuasive, i.e., eliciting the desired

response from consumer, is critical to the study of propaganda, social psychology,

and marketing. Despite its importance, computational modeling of persuasion

in computer vision is still in its infancy, primarily due to the lack of bench-

mark datasets that can provide persuasion-strategy labels associated with ads.

Motivated by persuasion literature in social psychology and marketing, as the

first contribution, we introduce an extensive vocabulary of persuasion strategies

and build the first ad corpus (both image and video) annotated with persua-

sion strategies (Section 2.1). We then formulate the task of persuasion strat-

egy prediction with multi-modal learning. The image dataset also provides im-

age segmentation masks, which labels persuasion strategies in the correspond-

ing ad images on the test split. We publicly release our code and dataset at

https://midas-research.github.io/persuasion-advertisements/. This

section is based on two papers (Kumar et al., 2023a; Bhattacharyya et al., 2023).

Persuasion strategies offer a human-interpretable framework for understand-

ing persuasion and its influence on behavior. Another focus of my work is to

uncover what models trained to predict behavior actually learn. Advances in deep

learning and large language models have significantly improved the accuracy of

behavior prediction (Khandelwal et al., 2024), but they have also increased the

models’ opacity, making them more like black boxes. Investigating what these

behavior prediction models understand about behavior can provide insights that

may be challenging to derive from first principles. This motivation underpins our

other work (Singla et al., 2022), discussed in Section 2.2. In this work, we mine

behavioral prediction models to understand what they learn about behavior which

makes them so successful at behavior prediction. This approach is complementary

to the approach afforded by persuasion strategies. While persuasion strategies help

https://midas-research.github.io/persuasion-advertisements/
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Figure 2.1: Different persuasion strategies are used for marketing the same prod-
uct (footwear in this example). The strategies are in red words and to
be defined by us in the paper.

Figure 2.2: Examples of videos with their annotated persuasion strategies. Rel-
evant keyframes and ASR captions are shown in the figure, along
with the annotated strategies. These two videos can be watched at
https://bit.ly/3Ie3JG0, https://bit.ly/3OgtLwj .

humans summarize all messages to predict and understand behavior, our method,

called universal adversarial triggers (UATs) help us understand a model’s global

behavior. We observe that content words with the lowest entropy appear as UATs.

We explain this idea with the help of several models and datasets.

2.1 Persuasion Strategies In Advertisements

Marketing communications is the mode by which companies and governments in-

form, remind, and persuade their consumers about the products they sell. They

are the primary means of connecting brands with consumers through which the
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consumer can know what the product is about, what it stands for, who makes

it, and can be motivated to try it out. To introduce meaning into their com-

munication, marketers use various rhetorical devices in the form of persuasion

strategies such as emotions (e.g., Oreo’s “Celebrate the Kid Inside”, humor by

showing Ronald McDonald sneaking into the competitor Burger King’s store to

buy a burger), reasoning (e.g., “One glass of Florida orange juice contains 75%

of your daily vitamin C needs”), social identity (e.g., Old Spice’s “Smell like

a Man”), and impact (e.g., Airbnb showing a mother with her child with the

headline “My home is funding her future”) (Refer to Fig. 2.3 to see these ads).

Similarly, even for marketing the same product, marketers use different persuasion

strategies to target different demographies (see Fig. 2.1). Therefore, recognizing

and understanding persuasion strategies in ad campaigns is vitally important to

decipher viral marketing campaigns, propaganda, and enable ad-recommendation.

Studying rhetorics of this form of communication is an essential part of un-

derstanding visual communication in marketing. Aristotle, in his seminal work

on rhetoric, underlining the importance of persuasion, equated studying rhetorics

with the study of persuasion* (Rapp, 2002). While persuasion is studied ex-

tensively in behavioral sciences, such as marketing (Meyers-Levy and Malaviya,

1999; Keller et al., 2003) and psychology (Hovland et al., 1953; Petty and Ca-

cioppo, 1986), computational modeling of persuasion in computer vision is still

in its infancy, primarily due to the lack of benchmark datasets that can provide

representative corpus to facilitate this line of research. In the limited work that

has happened on persuasion in computer vision, researchers have tried to address

the question of which image is more persuasive (Bai et al., 2021) or extracted

low-level features (such as emotion, gestures, and facial displays), which indirectly

help in identifying persuasion strategies without explicitly extracting the strategies

themselves (Joo et al., 2014). On the other hand, decoding persuasion in textual

content has been extensively studied in natural language processing from both ex-

tractive, and generative contexts (Habernal and Gurevych, 2016; Chen and Yang,

2021a; Luu et al., 2019). This forms the motivation of our work, where we aim to

identify the persuasion strategies used in visual content such as advertisements.
*“Rhetoric may be defined as the faculty of discovering in any particular case all of the

available means of persuasion” (Rapp, 2002)
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(a)

Figure 2.3: Example of various rhetoric strategies used in advertisements
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The systematic study of persuasion began in the 1920s with the media-effects

research by Lasswell (Lasswell, 1971), which was used as the basis for developing

popular models of persuasion, like the Elaboration Likelihood Model (ELM) (Petty

and Cacioppo, 1986), Heuristic Systematic Model (HSM) (Chaiken, 1980), and

Hovland’s attitude change approach (Hovland et al., 1953). Laswell in this research

broke down communication into five factors by defining communication as an act

of who said it, what was said, in what channel it was said, to whom it was said,

and with what effect it was said. Later, this model was used as the basis for

developing popular models of persuasion, like Elaboration Likelihood Model (Petty

and Cacioppo, 1986), Heuristic Systematic Model (Chaiken, 1980), and Hovland’s

attitude change approach (Hovland et al., 1953). Amongst these, the most widely

accepted model of persuasion theory is the Elaboration Likelihood Model (ELM).

These models of persuasion posit a dual process theory that explains attitude

and behavior change (persuasion) in terms of the following major factors: stimuli

(messages), personal motivation (the desire to process the message), capability of

critical evaluation, and cognitive busyness. These factors could be divided into

cognitive, behavioral, and affective processes of attitude change. Thus, a per-

son may begin liking a new political candidate because she just donated $100 to

the campaign (behavior-initiated change), because the theme music in a recently

heard commercial induced a general pleasantness (affect-initiated change), or be-

cause the person was impressed with the candidate’s issue positions (cognitive

initiated change). Similarly, if a person already likes a political candidate he may

agree to donate money to the campaign (behavioral influence), may feel happiness

upon meeting the candidate (affective influence), and may selectively encode the

candidate’s issue positions (cognitive influence) (Petty and Cacioppo, 1986).

ELM posits that when facing a message from a persuader, the persuadee reacts

by using the two information processing channels: central processing or peripheral

processing. When the persuadee processes information centrally, the cognitive

responses, or elaborations, will be much more relevant to the information, whereas

when processing peripherally, the individual may rely on heuristics and other rules

of thumb when elaborating on a message. The factors which influence how and

how much one will elaborate the persuasive message is given by the message type,

personal motivation, and other factors presented in the ELM. Being at the high
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end of the elaboration continuum, people assess object-relevant information in

relation to schemas that they already possess, and arrive at a reasoned attitude

that is supported by information (Van Lange et al., 2011).

In this chapter, we build on these psychological insights from persuasion mod-

els in sociology and marketing and study the message strategies that lead to per-

suasion. We codify, extend, and unify persuasion strategies studied in the psy-

chology and marketing literature into a set of 20 strategies divided into 9 groups

(see Fig. 2.4, Table 2.1.2): Authority and Credibility, Social Identity and Proof,

where cognitive indirection in the form of group decisioning and expert author-

ity is used for decisions, Value and Impact Formulation where logic is used to

explain details and comparisons are made, Reciprocity, Foot in the door, Over-

coming Resistance where social and cognitive consistency norms are harnessed to

aid decision-making, Scarcity, Anthropomorphism and Emotion where information

is evaluated from the lenses of feelings and emotions. In addition to introducing

the most extensive vocabulary for persuasion strategies, we make a superset of

persuasion strategies presented in the prior NLP works, which introduced text

and domain-specific persuasion tactics, thus making large-scale understanding of

persuasion across multiple contexts comparable and replicable.

Constructing a large-scale dataset containing persuasion strategies labels is

time-consuming and expensive. We leverage active learning to mitigate the cost

of labeling fine-grained persuasion strategies in advertisements. We first introduce

an attention-fusion model trained in a multi-task fashion over modalities such as

text, image, and symbolism. We use the action-reason task from the Pitts Ads

dataset (Hussain et al., 2017) to train the model and then annotate the raw ad

images from the same dataset for persuasion strategies based on an entropy based

active learning technique.

To sum up, our contributions include:

1. We construct the largest set of generic persuasion strategies based on theoret-

ical and empirical studies in marketing, social psychology, and machine learning

literature.

2. We introduce the first dataset for studying persuasion strategies in adver-

tisements. This enables initial progress on the challenging task of automatically
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understanding the messaging strategies conveyed through visual advertisements.

We also construct a prototypical dataset containing image segmentation masks

annotating persuasion strategies in different segments of an image.

3. We formulate the task of predicting persuasion strategies with a multi-task

attention fusion model.

4. We conduct extensive experiments on the released corpus, showing the effect

of different modalities on identifying persuasion strategies, correlation between

strategies and topics and objects with different strategies.

2.1.1 Related Work

How do messages change people’s beliefs and actions? The systematic study of

persuasion has captured researchers’ interest since the advent of mass influence

mechanisms such as radio, television, and advertising. Work in persuasion spans

across multiple fields, including psychology, marketing, and machine learning.

Persuasion in Marketing and Social Psychology: Sociology and com-

munication science has studied persuasion for centuries now starting from the

seminal work of Aristotle on rhetoric. Researchers have tried to construct and

validate models of persuasion. Due to space constraints, while we cannot cover

a complete list of literature, in Section 2.1.2, we list the primary studies which

originally identified the presence and effect of various persuasion tactics on per-

suadees. We build on almost a century of this research and crystallize them into

the persuasion strategies we use for annotation and modeling. Any instance of

(successful) persuasion is composed of two events: (a) an attempt by the per-

suader, which we term as the persuasion strategies, and (b) subsequent uptake

and response by the persuadee (Anand et al., 2011; Vakratsas and Ambler, 1999).

In this work, we study (a) only while leaving (b) for future work. Throughout the

rest of the paper, when we say persuasion strategy, we mean the former without

considering whether the persuasion was successful or not.
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Figure 2.4: Persuasion strategies in advertisements. Marketers use both text and vision modalities to create ads containing different messaging strate-
gies. Different persuasion strategies are constituted by using various rhetorical devices such as slogans, symbolism, colors, emotions, allusion.
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Persuasion in Machine Learning: Despite extensive work in social psy-

chology and marketing on persuasion, most of the work is qualitative, where re-

searchers have looked at a small set of messages with various persuasion strategies

to determine their effect on participants. Computational modeling of persuasion is

still largely lacking. In the limited work in computational modeling of persuasion,

almost all of it is concentrated in the NLP literature, with only very few works in

computer vision. Research on persuasion in NLP under the umbrella of argumen-

tation mining is broadly carried out from three perspectives: extracting persuasion

tactics, studying the effect of constituent factors on persuasion, and measurement

of persuasiveness nature of content. A few examples of research studies that anno-

tate persuasive strategies in various forms of persuader-persuadee interactions like

discussion forums, social media, blogs, academic essays, and debates are (Anand

et al., 2011; Tan et al., 2016; Chen and Yang, 2021b). We use these and other

studies listed in Section 2.1.2 to construct our vocabulary of persuasion strategies

in advertisements.

Other studies focus on factors such as argument ordering (Shaikh et al., 2020;

Li et al., 2020a), target audience (Lukin et al., 2017), and prior beliefs (El Baff

et al., 2020) for their effect in bringing about persuasion. Studies such as (Althoff

et al., 2014; Wei et al., 2016) also try to measure persuasiveness and generate

persuasive content. The generation of persuasive (textual) messages has been

studied (Donadello et al., 2020) and, in particular, a novel ML method for learning

user model tailored persuasion strategy has also been proposed (Hadoux et al.,

2021; Donadello et al., 2022).

As one of the first works in the limited work in the computer vision domain, Joo

et al. (Joo et al., 2014) introduced syntactical and intent features such as facial

displays, gestures, emotion, and personality, which result in persuasive images.

Their analysis was done on human images, particularly politicians, during their

campaigns. Their work on political campaigners is more restrictive than general

product and public-service advertisements. Moreover, they deal with low-level

features such as gestures and personality traits depicted through the face, which

are important for detecting persuasion strategies but are not persuasion strategies

themselves. Recently, Bai et al. (Bai et al., 2021) studied persuasion in debate

videos where they proposed two tasks: debate outcome prediction and intensity

28



of persuasion prediction. Through these tasks, they predict the persuasiveness of

a debate speech, which is orthogonal to the task of predicting the strategy used

by the debater. Other similar works which discuss persuasiveness of images and

videos are (Joo et al., 2015; Siddiquie et al., 2015).

2.1.2 Generic Taxonomy of Persuasion Strategies

This section introduces the generic taxonomy of persuasive strategies, their defini-

tions, examples, and connections with prior work. Representative literature from

a) SPM: Social Psychology and Marketing, b) ML: Machine Learning

1. Authority and Credibility: SPM:(Aronson et al., 1963; Milgram and Gudehus,
1978; Cialdini and Cialdini, 2007; Milgram, 1963; McGinnies and Ward,
1980; Giffin, 1967; Petty and Cacioppo, 1986) ML:(Anand et al., 2011; Iyer
and Sycara, 2019; Wachsmuth et al., 2017; Chen and Yang, 2021a; Durmus
and Cardie, 2018)
(a) Guarantees: Guarantees reduce risk and people try out such products

more often.
(b) Authority: Authority indicated through expertise, source of power,

third-party approval, credentials, and awards
(c) Trustworthiness: Trustworthiness indicated honesty and integrity of

the source through tropes like years of experience, “trusted brand”,
numbers and statistics

2. Social Identity and Proof: SPM:(Deutsch and Gerard, 1955; Petty et al., 1997;
Wood, 2000; Cialdini and Goldstein, 2004; Levesque and Pons, 2020) ML:
(Anand et al., 2011; Iyer and Sycara, 2019; Rosenthal and Mckeown, 2017;
Yang et al., 2019; Zhang et al., 2016; Stab and Gurevych, 2017; Althoff et al.,
2014; Hidey et al., 2017; Durmus and Cardie, 2018)
(a) Social Identity: Normative influence, which involves conformity with

the positive expectations of “another”, who could be “another person, a
group, or one’s self” (includes self-persuasion, fleeting attraction, alter-
casting, and exclusivity)

(b) Social Proof: Informational influence by accepting information ob-
tained from others as evidence about reality, e.g., customer reviews
and ratings

3. Reciprocity: SPM:(Regan, 1971; Cialdini and Cialdini, 2007; Clark, 1984;
Clark and Mills, 1979; Clark et al., 1986) ML:(Anand et al., 2011; Iyer and
Sycara, 2019; Althoff et al., 2014; Chen and Yang, 2021a; Shaikh et al., 2020)

(a) Reciprocity: By obligating the recipient of an act to repayment in the
future, the rule for reciprocation begets a sense of future obligation,
often unequal in nature
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4. Foot in the door: SPM: (Freedman and Fraser, 1966; Burger, 1999; Cialdini
and Cialdini, 2007) ML:(Chen and Yang, 2021b; Wang et al., 2019; Vargheese
et al., 2020)
(a) Foot in the door: Starting with small requests followed by larger

requests to facilitate compliance while maintaining cognitive coherence.

5. Overcoming Resistance: SPM:(McGuire and Papageorgis, 1961; Knowles and
Linn, 2004; McGuire, 1964) ML:{None}
(a) Overcoming Resistance: Overcoming resistance (reactance) by post-

poning consequences to the future, by focusing resistance on realistic
concerns, by forewarning that a message will be coming, by acknowl-
edging resistance, by raising self-esteem and a sense of efficacy.

6. Value and Impact Formulation: SPM:(Lee et al., 2010; Furnham and Boo,
2011; Wegener et al., 2001; Tversky and Kahneman, 1974; Strack and Muss-
weiler, 1997; Bhattacharya and Sen, 2003) ML:(Zhang et al., 2017; Longpre
et al., 2019)
(a) Concreteness: Using concrete facts, evidence, and statistics to appeal

to the logic of consumers
(b) Anchoring and Comparison: A product’s value is strongly influ-

enced by what it is compared to.
(c) Social Impact: Emphasizes the importance or bigger (societal) im-

pact of a product

7. Scarcity: SPM: (Brehm, 1966; Lynn, 1991; Rothman et al., 1999; Tversky
and Kahneman, 1985) ML:(Yang et al., 2019; Chen and Yang, 2021a; Shaikh
et al., 2020)
(a) Scarcity: People assign more value to opportunities when they are

less available. This happens due to psychological reactance of losing
freedom of choice when things are less available or they use availability
as a cognitive shortcut for gauging quality.

8. Anthropomorphism: SPM:(Fournier, 1998; Levesque and Pons, 2020; Epley
et al., 2007) ML:{None}
(a) Anthropomorphism: When a brand or product is seen as human-

like, people will like it more and feel closer to it.

9. Emotion: Aesthetics, feeling and other non-cognitively demanding features
used for persuading consumers SPM:(Hibbert et al., 2007; Petty and Ca-
cioppo, 1986; Petty et al., 1983)
ML:(Yang et al., 2019; Tan et al., 2016; Hidey et al., 2017; He et al., 2018;
Durmus and Cardie, 2018; Zhang et al., 2017; Wachsmuth et al., 2017)
(a) Amazed
(b) Fashionable
(c) Active, Eager
(d) Feminine
(e) Creative
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Concreteness
1007

Eager 
540

Fashionable 
443

Crea�ve 
402

Ac�ve 
259

Emo�on
238

Cheerful 
223

Reciprocity
186

Feminine 
173

Trustworthiness
157

Unclear
148
Amazed 

141 Social Iden�ty
126

Social Impact
103

Authority
65

   Reverse 
Psychology

15

Foot in the Door
18

Customer Reviews
28

Anthropomorphism
37

Guarantees
45

Anchoring & 
Comparison

48

Scarcity
64

255

Figure 2.5: Distribution of Persuasion Strategies in the image persuasion strategy
dataset. The top-3 strategies are Concreteness, Eager, and Fashion-
able.

(f) Cheerful
(g) Further Minor

10. Unclear: If the ad strategy is unclear

2.1.3 Persuasion Strategy Corpus Creation

2.1.3.1 Persuasion Strategy Dataset For Image Advertisements

To annotate persuasion strategies on image advertisements, we leverage raw im-

ages from the Pitts Ads dataset. It contains 64,832 image ads with labels of topics,

sentiments, symbolic references (e.g. dove symbolizing peace), and reasoning the

ad provides to its viewers (see Fig 2.10 for a few examples). The dataset has ads

spanning multiple industries, products, services, and also contains public service

announcements, making it representative of the diverse advertising landscape en-

countered in real-world applications such as social media platforms, websites, and

mobile applications. This diversity is crucial for developing models that can gen-

eralize to practical scenarios including automated content analysis and marketing

intelligence systems. Through this, they presented an initial work for the task of

understanding visual rhetoric in ads. Since the dataset already had a few types of

labels associated with the ad images, we used active learning on a model trained

in a multi-task learning fashion over the reasoning task introduced in their paper.

We explain the model and then the annotation strategy followed in §2.1.4.
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To commence training, we initially annotated a batch of 250 randomly selected

ad images with persuasion strategies defined in Section 2.1.2. We recruited four

research assistants to label persuasion strategies for each advertisement. Defini-

tions and examples of different persuasion strategies were provided, together with

a training session where we asked annotators to annotate a number of example

images and walked them through any disagreed annotations. To assess the re-

liability of the annotated labels, we then asked them to annotate the same 500

images and computed Cohen’s Kappa statistic to measure inter-rater reliability.

We obtained an average score of 0.55. The theoretical maximum of Kappa, given

the unequal distribution, is 0.76. In such cases, Cohen (Cohen, 1960) suggested

that one should divide kappa by its maximum value k/kmax, which comes out to

be 0.72. This is a substantial agreement. Further, to maintain labeling consis-

tency, each image was double annotated, with all discrepancies resolved by an

intervention of the third annotator using a majority vote.

To address annotator diversity challenges and potential biases within our re-

source constraints, we implemented several strategies to handle annotation chal-

lenges: (1) regular calibration sessions were conducted where annotators discussed

difficult cases and refined their understanding of strategy definitions, (2) we pro-

vided extensive examples covering edge cases and ambiguous scenarios to reduce

subjective interpretation, and (3) we tracked individual annotator performance

patterns to identify and correct systematic biases. Additionally, whenever cul-

tural differences or ambiguities about strategy interpretation arose during the

annotation process, these cases were brought up and discussed in group sessions

to establish consensus and ensure consistent labeling across all annotators.

Despite these measures, we acknowledge that potential biases in annotation

remain a concern for generalizability. Cultural biases may affect how annotators

perceive certain persuasion strategies, particularly those related to social identity,

authority, and emotional appeals, which can vary significantly across different

cultural contexts. Demographic biases related to age, gender, and socioeconomic

background may also influence the interpretation of strategies like social proof,

reciprocity, and scarcity. These annotation biases could potentially limit the

model’s ability to generalize across diverse populations and cultural contexts, as

the training data may reflect the specific cultural and demographic perspectives
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of our annotator pool rather than universal patterns of persuasion strategy recog-

nition.

The assistants were asked to label each image with no more than 3 strategies.

If an image had more than 3 strategies, they were asked to list the top 3 strategies

according to the area covered by the pixels depicting that strategy. In total, we

label 3000 ad-images with their persuasion strategies; and the number of samples in

train, val, and test split are 2500, 250, and 250, respectively†. Fig. 2.5 presents the

distribution of persuasion strategies in the dataset. It is observed that concreteness

is the most used strategy in the dataset, followed by eagerness and fashion. The

average number of strategies in an ad is 1.49, and the standard deviation is 0.592.

We find that scarcity (92.2%), guarantees (91.1%), reciprocity (84.4%), social

identity (83.3%), and cheerful (83%), are the top 5 strategies, which occur in

groups of 2 or 3. We observe that the co-occurrence of these strategies is due

to the fact that many of them cover only a single modality (i.e., text or visual),

leaving the other modality free for a different strategy. For example, concreteness

is often indicated by illustrating points in text, while the visual modality is free for

depicting, say, emotion. See Fig. 2.6 for an example, where the image depicting

Authority also has concreteness strategy in it. Similarly, feminine emotion is also

depicted in Fig. 2.1, along with concreteness.

Next, we calculate the Dice correlation coefficient‡ statistics for pairs of co-

occurring persuasion strategies. The top-5 pairs are eager-concreteness (0.27),

scarcity-reciprocity (0.25), eager-cheerful (0.19), amazed-concreteness (0.17), and

eager-reciprocity (0.17). We find that these correlation values are not particularly

high since marketers seldom use common pairings of messaging strategies to mar-

ket their products. The visual part mostly shows eager strategy in ads; therefore,

we find that the text modality becomes free to show other strategies. That is

why primarily text-based concreteness, cheerfulness, and reciprocity strategies are

present with the visual-based eager strategy in the text modality. Also, primarily

vision-based amazement, eagerness, and scarcity (short-text) strategies co-occur

with text-based reciprocity and concreteness (e.g., Fig. 2.1).
†Table 2.4 shows the detailed distribution of the number of strategies in ads
‡The Dice Coefficient is defined as: 2 ∗ |X ∩ Y | / (|X|+ |Y |), where X and Y are two sets;

a set with vertical bars on either side refers to the cardinality of the set, i.e. the number of
elements in that set; and ∩ refers to the intersection of two sets.
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Figure 2.6: Image with a segmentation mask depicting the strategies Emotion:Cheerful,
Emotion:Eager and Trustworthiness.

Next, we calculate the correlation between image topics and objects present

with persuasion strategies. We see that the emotion:feminine and emotion:fashionable

strategies are most often associated with beauty products and cosmetics (corr=0.4256,

0.2891). This is understandable since most beauty products are aimed at women.

We see that the fast-food and restaurant industries often use eagerness as their

messaging strategy (corr = 0.5877,0.3470). We find that the presence of humans

in ads is correlated with the concreteness strategy (see Fig 2.7 for a few examples)

(corr=0.3831). On the other hand, vehicle ads use emotion:amazed and concrete-

ness (corr=0.5211,0.2412) (see Fig:2.8 for detailed correlations).

Similar to a low correlation in co-occurring strategies, we find that product
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(a) (b) (c)

Figure 2.7: Advertisements containing humans and concreteness

segments and their strategies are not highly correlated. This is because marketers

use different strategies to market their products even within a product segment.

Fig. 2.1 shows an example in which the footwear industry (which is a subsegment

of the apparel industry) uses different strategies to market its products. Further,

for a batch of 250 images, we also label segmented image regions corresponding

to the strategies present in the image. These segment masks were also double-

annotated. Fig. 2.6 presents an example of masks depicting parts of the image

masked with different persuasion strategies in a drink advertisement.

2.1.3.2 Persuasion Strategy Dataset For Video Advertisements

For this task, we collected 2203 video advertisements from popular brands publicly

available on the web, reflecting the growing importance of video marketing on plat-

forms like YouTube, Instagram, and TikTok where temporal dynamics and multi-

modal storytelling create complex persuasive narratives. We use the following 12

strategies as our target persuasion strategy set: Social Identity, Concreteness, An-

choring and Comparison, Overcoming Reactance, Reciprocity, Foot-in-the-Door,

Authority, Social Impact, Anthropomorphism, Scarcity, Social Proof, and Unclear.

This video-based approach complements our image dataset by capturing persua-

sion strategies that unfold over time, enabling applications in automated market-

ing content analysis and planning. We use non-experts human annotators to label

this dataset (as compared to expert humans for the image ads dataset). In order
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Figure 2.8: Dice correlation between topics and strategies. Topics are taken from
the Pitts Ad dataset and further similar topics are combined to get
these values.

to make the class labels easier to understand for non-expert human annotators, we

make a list of 15 yes/no type-questions containing questions like “Was there any

expert (person or company) (not celebrity) encouraging to use the product/brand?

Was the company showcasing any awards (e.g., industrial or government)? Did the

video show any customer reviews or testimonials?” (complete list in Table 2.1).

Each human annotator watches 15 videos such that each video gets viewed by

at least two annotators and answers these questions for each video. Based on all

the responses for a video, we assign labels to that video. We remove videos with

an inter-annotator score of less than 60%. After removing those, we get a dataset

with 1002 videos, with an average length of 33 secs and a distribution as shown

in Fig. 2.9.

Similar to the image dataset (Kumar et al., 2023a), potential annotation biases

pose challenges for model generalizability in the video domain. The use of non-

expert annotators, while providing broader accessibility to the annotation task,

may introduce inconsistencies in strategy interpretation compared to expert an-

notations. Cultural and demographic biases may be particularly pronounced in

video content, where temporal dynamics, audio cues, and visual narratives can
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be interpreted differently across cultural contexts. For instance, strategies involv-

ing social impact, authority, or emotional appeals may be perceived differently

by annotators from varying backgrounds, potentially affecting the model’s ability

to generalize to global audiences with diverse cultural perspectives on persuasive

content. This dataset is then used for the persuasion strategy identification task.

Figure 2.9: Distribution of persuasion strategies in our video persuasion strategy
dataset

2.1.4 Modeling: Persuasion Strategy Prediction

2.1.4.1 Modelling Persuasion Strategy For Image Advertisements

The proposed Ads dataset D annotated with the persuasion strategies comprises

of samples where each sample advertisement ai is annotated with a set of an-

notation strategies Si such that 1 ≤ |Si| ≤ 3. The unique set of the proposed

persuasion strategies P is defined in Table 2.1.2. Given ai, the task of the model-

ing is to predict the persuasion strategies present in the input ad. As we observe

from Fig. 2.4, advertisements use various rhetoric devices to form their messag-

ing strategy. The strategies thus are in the form of multi-modalities, including

images, text and symbolism. To jointly model the modalities, we design an at-

tention fusion multi-modal framework, which fuses multimodal features extracted
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Question Strategy Question Strategy
Was there any
expert (person or
company) (not
celebrity) encour-
aging to use the
product/brand?

Authority Did the video
show any nor-
mal customers
(non-expert, non-
celebrity) using the
product?

Social Iden-
tity

Did the video
showcase any
awards or long
usage history of the
product/brand?

Authority Did the video show
any customer re-
views or testimoni-
als?

Social Proof

Was the produc-
t/brand comparing
itself with other
competitors or
existing solutions?

Anchoring
and Com-
parison

Were any num-
ber/statistics
mentioned?

Concreteness

Did the video talk
about any specific
features or pro-
vide information
about the produc-
t/brand?

Concreteness Were there any
mention of any
offers on the
brand/product?

Reciprocity

Were the offers lim-
ited or available for
a short period of
time?

Scarcity Was the produc-
t/brand told to be
free or available on
a discount?

Foot in the
Door, Reci-
procity

Was the
brand/product
described as sim-
ple, easy to use,
or can start using
with minimal resis-
tance?

Overcoming
Reactance,
Foot in the
Door

Was the
brand/product
talking about
bigger societal
impact?

Social Im-
pact

Did the brand
provide any guar-
antees that might
help reduce the risk
of people trying
out the product?

Overcoming
Reactance

Did the video pro-
vide any resources,
tips, guides, or
tools related to the
product?

Reciprocity

Is the brand or
product portrayed
as human-like?

Anthropo-
morphism

Table 2.1: The questions we asked to the non-expert annotators to help them
identify persuasion strategy contained in the video advertisement.
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Ac�on/Reason:
I should shop at this store

because everything is
40% off.

Predicted
Ac�on/Reason:

I should shop at this store
because they have a sale.

Topic:
Clothing and
accessories

Predicted Topic:
Clothing and
accessories

Sen�ments:
Cheerful, Crea�ve,

Thri�y, Youthful

Predicted Sen�ments:
Crea�ve, Fashionable

(a)

Ac�on/Reason:
I should shop at this store

because everything is
40% off.

Predicted
Ac�on/Reason:

I should shop at this store
because they have a sale.

Topic:
Clothing and
accessories

Predicted Topic:
Clothing and
accessories

Sen�ments:
Cheerful, Crea�ve,

Thri�y, Youthful

Predicted Sen�ments:
Crea�ve, Fashionable

Ac�on/Reason:
Buy Calvin Klein because

they make you sexy.

Predicted
Ac�on/Reason:

I should wear Calvin Klein
underwear because it will

make me look sexy and cool.

Topic:
Clothing and
accessories

Predicted Topic:
Clothing and
accessories

Sen�ments:
Angry, Crea�ve, Eager,

Fashionable, Manly

Predicted Sen�ments:
Fashionable

(b)

Ac�on/Reason:
I should shop at this store

because everything is
40% off.

Predicted
Ac�on/Reason:

I should shop at this store
because they have a sale.

Topic:
Clothing and
accessories

Predicted Topic:
Clothing and
accessories

Sen�ments:
Cheerful, Crea�ve,

Thri�y, Youthful

Predicted Sen�ments:
Crea�ve, Fashionable

Ac�on/Reason:
I should eat at KFC

because these athletes
eat there.

Predicted
Ac�on/Reason:

I should buy KFC because it
is great for football game.

Topic:
Restaurants, cafe,

fast food

Predicted Topic:
Sports equipments

and ac�vi�es

Sen�ments:
Cheerful, Crea�ve,

Eager

Predicted Sen�ments:
Ac�ve, 

Crea�ve, Eager

(c)

Figure 2.10: Some samples from the Pitts Ads dataset along with the ground truth
and predicted action-reason statement, topic and sentiments.

from the ad, e.g., the ad image, text present in the ad extracted through the OCR

(Optical Character Recognition), regions of interest (ROIs) extracted using an

object detector, and embeddings of captions obtained through an image caption-

ing model (see Fig. 2.11). The information obtained through these modalities are

firstly embedded independently through their modality specific encoders followed

by a transformer-based cross-attention module to fuse the extracted features from

different modalities. The fused embeddings from the attention module are then

used as input for a classifier that predicts a probability score for each strategy

p ∈ P . The overall architecture of the proposed model is illustrated in Fig.2.11.

In the following, we describe each step in the prediction pipeline in detail.

2.1.4.1.1 Feature Extractors In order to capture different rhetoric devices,

we extract features from the image, text, and symbolism modalities.

Image Feature: We use the Vision Transformer (Dosovitskiy et al., 2020)

(ViT) model for extracting image features from the entire input image. The
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model resizes the input image to size 224 × 224 and divides it into patches of

size 16× 16. The model used has been pre-trained on the ImageNet 21k dataset.

We only use the first output embedding, which is the CLS token embedding, a

768 dimension tensor, as we only need a representation of the entire image. Then,

a fully connected layer is used to reduce the size of the embedding, resulting in a

tensor of dimension 256.

Regions of Interest (RoIs) from Detected Objects and Captions: Ad

images contain elements that the creator deliberately chooses to create intentional

impact and deliver some message in addition to the ones that occur naturally in

the environment. Therefore, it is important to identify the composing elements

of an advertisement to understand the creator’s intention and the ad’s message to

the viewer. We detect and extract objects as regions of interest (RoIs) from the

advertisement images. We get the RoIs by training the single-shot object detector

model (Liu et al., 2016) on the COCO dataset (Lin et al., 2014). We compare it

with the recent YOLOv5 model (Redmon et al., 2016). We also extract caption

embeddings to detect the most important activity from the image using a caption

generation mode. We compare DenseCap (Yang et al., 2017) and the more recent

BLIP (Li et al., 2022) for caption generation.

OCR Text: The text present in an ad presents valuable information about

the brand, such as product details, statistics, reasons to buy the product, and

creative information in the form of slogans and jingles that the company wants its

customers to remember and thus making it helpful in decoding various persuasion

strategies. Therefore, we extract the text from the ads and use it as a feature

in our model. We use the Google Cloud Vision API for this purpose. All the

extracted text is concatenated, and the size is restricted to 100 words. We pass

the text through a BERT model and concatenate the embeddings for those 100

words. Similar to image embeddings, an FC layer is used to convert embeddings

to 256 dimensions. The final embedding of the OCR is a tensor of dimension

100× 256.

Symbolism: While the names of the detected objects convey the names or

literal meaning of the objects, creative images often also use objects for their

symbolic and figurative meanings. For example, an upward-going arrow repre-
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sents growth or the north direction or movement towards the upward direction

depending on the context; similarly, a person with both hands pointing upward

could mean danger (e.g., when a gun is pointed) or joy (e.g., during dancing). In

Fig. 2.4, in the creative Microsoft ad, a symbol of a balloon is created by grouping

multiple mice together. Therefore, we generate symbol embeddings to capture the

symbolism behind the most prominent visual objects present in an ad. We use

the symbol classifier by Hussain et al. (Hussain et al., 2017) on ad images to find

the distribution of the symbolic elements present and then convert this to a 256

dimension tensor.

2.1.4.1.2 Cross-Modal Attention To capture the inter-dependency of mul-

tiple modalities for richer embeddings, we apply a cross-modal attention (CMA)

layer (Frank et al., 2021) to the features extracted in the previous steps. Cross-

modal attention is a fusion mechanism where the attention masks from one modal-

ity (e.g. text) are used to highlight the extracted features in another modality (e.g.

symbolism). It helps to link and extract common features in two or more modali-

ties since common elements exist across multiple modalities, which complete and

reinforce the message conveyed in the ad. For example, the pictures of the silver

cup, stadium, and ball, words like “Australian”, “Pakistani”, and “World Cup”

present in the chips ad shown in Fig. 2.11 link the idea of buying Lays with sup-

porting one’s country’s team in the World Cup. Cross attention can also generate

effective representations in the case of missing or noisy data or annotations in one

or more modalities (Frank et al., 2021). This is helpful in our case since marketing

data often uses implicit associations and relations to convey meaning.

The input to the cross-modal attention layer is constructed by concatenating

the image, RoI, OCR, caption, and symbol embeddings. This results in a 114×256

dimension input to our attention layer. The cross-modal attention consists of two

layers of transformer encoders with a hidden dimension size of 256. The output

of the attention layer gives us the final combined embedding of our input ad.

Given image embeddings Ei, RoI embeddings Er, OCR embeddings Eo, caption

embeddings Ec and symbol embeddings Es, the output of the cross-attention layer
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Eatt is formulated as:

Enc(X) = CMA([Ei(X), Er(X), Eo(X), Ec(X), Es(X)]) ,

where [. . . , . . .] is the concatenation operation. For the advertisement in Fig. 2.11,

we observed that the caption “grey cup on the field” attends to OCR text (con-

taining words like “win”) and ViT features of the RoI (of “cup” and “field”).
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Figure 2.11: Architecture of the Persuasion Strategy Prediction model. To capture the different rhetoric devices, we extract features for the image, text,
and symbolism modalities and then apply cross-modal attention fusion to leverage the interdependence of the different devices. Further,
the model trains over two tasks: persuasion strategies and the reasoning task of action-reason prediction.
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2.1.4.1.3 Persuasion Strategy Predictor This module is a persuasion strat-

egy predictor, which processes the set of feature embedding Enc(X) obtained

through cross-modality fusion. Specifically, Enc(X) is passed through a self-

attention layer as:

o1 = softmax(Enc(X)⊗Wself−attn)
⊺ ⊗ Enc(X) (2.1)

where Enc(X) is of the dimension 114× 256, Wself−attn ∈ R256×1, ⊗ denote tensor

multiplication and o1 denotes the output of self attention layer, which is further

processed through a linear layer to obtain o|P| to represent the logits for each

persuasion strategy. We apply sigmoid over each output logit such that the ith

index of the vector after applying sigmoid denotes pi - the probability with which

ith persuasion strategy is present in the ad image. Our choice of using sigmoid

over softmax is motivated by the fact that multiple persuasion strategies can be

present simultaneously in an ad image. Consequently, the entire model is trained

in an end-to-end manner using binary cross-entropy loss Ls over logit for each

strategy:

Ls = [−yi log(pi)− (1− yi) log(1− pi)] (2.2)

where, yi is 1 if ith persuasion strategy is present in the ad and 0 otherwise. It can

be observed in Table 2.2 that our model achieves an accuracy of 59.2%, where a

correct match is considered if the strategy predicted by the model is present in the

set of annotated strategies for a given ad. Further, we perform several ablations

where we exclude each modality while retaining all the other modalities. We note

that for each modality, excluding the modality results in a noticeable decrease in

accuracy, with significant decreases observed when excluding DenseCap (∼ 3.6%)

and OCR (∼ 4.4%). Further, we observe that using DenseCap for obtaining

caption embeddings, and SSD for object detection works better than BLIP and

YOLOv5, respectively (see Table 2.3). We also explore using focal loss (Lin et al.,

2017) in place of cross-entropy loss to handle class imbalance but observed that

it led to degradation instead of improvements (top-1 acc.§ of 56.4% vs 59.2%
§Top-1 Accuracy: It is defined as the fraction of images, where the highest predicted strategy

is present in the ground-truth strategies. Top-3 Accuracy : It is defined as the fraction of images,
where any of the top-3 highest predicted strategies is present in the ground-truth strategies.
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Models Top-1 Acc. Top-3 Acc.

Our Model 59.2 84.8

w/o DenseCap 55.6 80.8

w/o Symbol 58.8 81.6

w/o DenseCap & Symbol 55.2 80.8

w/o OCR 54.8 82

w/o Symbol,
OCR & DenseCap 58 78.8

w/o Action-Reason Task 56.4 80.4

Random Guess 6.25 18.75

Table 2.2: Effect of different Modalities and Tasks on the accuracy and performance of
the strategy prediction task.

using cross-entropy). We also train the model of Hussain et al. (Hussain et al.,

2017) for strategy prediction through a similar configuration as ours (along with

action-reason generation using an LSTM branch). We find that their top-1 and

top-3 accuracy is 52.4% (vs. 59.2% ours) and 75.7% (vs. 84.8% ours), which is

lesser compared to our model.

2.1.4.1.4 Multi Task Learning One of the key opportunities for our per-

suasion strategies data labeling and modeling task was the presence of additional

labels already given in the base Pitts Ads dataset. In that, authors had given la-

bels about the reasoning task. For the reasoning task, the annotators were asked

to provide answers in the form “I should [Action] because [Reason].” for each ad.

In other words, they asked the annotators to describe what the viewer should do

and why, according to the ad. Similar to the reasoning task, persuasion strate-

gies provide various cognitive, behavioral, and affective reasons to try to elicit the

motivation of the ad viewers towards their products or services. Therefore, we

hypothesize that these natural language descriptions of why the viewers should

follow the ad will be informative in inferring the ad’s persuasion strategy.

We formulate obtaining action-reason statement as a sequence generation task

where the model learns to generate a sentence Y g = (yg1 , . . . , y
g
T ) of length T

conditioned on advertisement X by generating the sequence of tokens present in

the action-reason statement. To achieve this, we use a transformer decoder module

that attends on the features Enc(X) as shown in Fig. 2.11. The annotated action-

reason statement is used to train the transformer decoder as an auxiliary task to
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Model Used Top-1
Accuracy

Top-3
Accuracy Recall

Model with
DenseCap & SSD 59.2 84.8 74.59

Model with
BLIP & YOLOv5 58.4 83.8 71.58

Table 2.3: Comparison of caption and object detection models. We noticed that BLIP
while being more recent and trained on a larger dataset, generates more
informatory captions for background objects which DenseCap successfully
ignores.

#ads with
1 strategy

#ads with
2 strategies

#ads with
3 strategies

Avg.
strategies

Std.
Dev.

Train-Set 1440 905 155 1.486 0.612

Val-Set 132 98 20 1.552 0.639

Test-Set 147 93 10 1.452 0.574

Total 1719 1096 185 1.49 0.592

Table 2.4: Distribution of test, train, validation, and the total dataset

strategy prediction through the standard teacher forcing technique used in Seq2Seq

framework. Please refer to the Supplementary for more architectural details about

the action-reason generation branch. As shown in Table 2.2, generating action-

reason as an auxiliary task improves the strategy prediction accuracy by 2.8%.

We evaluate the performance on action-reason generation on following metrics:

BLEU-1, BLEU-2, BLEU-3, BLEU-4, METEOR, ROUGE, CIDER, SPICE and

observed a score of 53.6, 42.0, 33.1, 25.7, 26.3, 48.4, 42.8, 8.9 respectively.
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Figure 2.12: Incremental effect of introducing new data through active learning; Results
for prediction of persuasion strategies on the test set

2.1.4.1.5 Active Learning We use an active learning method to ease the

large-scale label dependence when constructing the dataset. As in every active
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learning setting, our goal is to develop a learner that selects samples from unlabeled

sets to be annotated by an oracle. Similar to traditional active learners (Gilad-

Bachrach et al., 2005; Lewis and Catlett, 1994), we use uncertainty sampling

to perform the sample selection. In doing so, such function learns to score the

unlabeled samples based on the expected performance gain they are likely to

produce and used to update the current version of the localization model being

trained. To evaluate each learner, we measure the performance improvements,

assessed on a labeled test set at different training dataset sizes.

At every learning step t, a set of labeled samples Lt is first used to train a

model ft. Then, from an unlabeled pool Ut = D − Lt, an image instance a is

chosen by a selection function g. Afterwards, an oracle provides temporal ground-

truth for the selected instance, and the labeled set Lt is augmented with this new

annotation. This process repeats until the desired performance is reached or the

set Ut is empty.

In our implementation, we instantiate the active learning selection function

as the entropy of the probability distribution predicted by the model over the

set of persuasion strategies for a given ad image instance a. Formally, g =

−
∑|P|

i=1 p
n
i ∗ log(pni ), where pni denotes the normalized probability with which ith

persuasion strategy is present in a as per the model prediction. The normalized

probability pni is estimated as pi/
∑|P|

j=1 pj. Intuitively, ad samples with high en-

tropy selection values indicate that the model trained on limited data has a higher

degree of confusion while predicting the persuasion strategy since it is not deci-

sively confident about predicting few strategies. Hence, we rank the unlabeled ad

images in the decreasing order of difficulty according to the corresponding values

of the entropy selection function and select the top-k ads in the subsequent batch

for annotation followed by training. As shown in Fig. 2.12, we set k to be 250 and

analyze the effect of incrementally introducing new samples selected through ac-

tive learning. It can be seen that both top-1 and top-3 accuracy increases with the

addition of new training data. We stop at the point when 2500 training samples

are used since the model performs reasonably well with a top-1 and top-3 strategy

prediction accuracy of 59.2% and 84.8% (see Fig. 2.12).

For sample selection, we rank the ads using the model’s entropy as the ranking
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function. We choose samples with the highest entropy, indicating the model’s con-

fusing in predicting strategies. The ad samples with top-k entropy (where k=250)

are selected for annotation in each batch (with the entropy thresholds for each

batch being determined by the entropy of the kth sample). The active learning

process stops when the model achieves reasonable performance (thus determining

the convergence criterion), with a top-1 accuracy of 59.2% and top-3 accuracy of

84.8% after training on 2,500 samples. Incremental improvements in accuracy are

observed as new data is introduced through active learning.

2.1.4.2 Modelling Persuasion Strategy For Video Advertisements

Large Language Models (LLMs) have been demonstrated to perform well for down-

stream classification tasks in the text domain. This powerful ability has been

widely verified on natural language tasks, including text classification, semantic

parsing, mathematical reasoning, etc. Inspired by these advances of LLMs, we

aim to explore whether they could tackle reasoning tasks on multimodal data

(i.e. videos). Therefore, we propose a storytelling framework, which leverages

the power of LLMs to verbalize videos in terms of a text-based story and then

performs downstream video understanding tasks on the generated story instead

of the original video. Our pipeline can be used to verbalize videos and under-

stand videos to perform complex downstream tasks such as emotion, topic, and

persuasion strategy detection.

We show the performance of our framework on fifteen distinct tasks across five

datasets. Firstly, we employ a video story dataset to evaluate the story genera-

tion task. Secondly, we utilize a video advertisements dataset to assess topic and

emotion classification, as well as action and reason generation. Then, the persua-

sion strategy dataset to evaluate the task of understanding persuasion strategies

within stories, and finally, HVU and LVU for concept, user engagement, and at-

tribute prediction. These diverse datasets allow us to evaluate the performance

and capabilities of our framework thoroughly.

1. The Video story dataset (Li et al., 2020b) contains 105 videos, from

four types of common and complex events (i.e. birthday, camping, Christmas,

and wedding) and corresponding stories written by annotators. It has longer
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videos (average length 12.4 mins) and longer descriptions (162.6 words on average).

Moreover, the sentences in the dataset are more sparsely distributed across the

video (55.77 sec per sentence). Metrics: Following (Li et al., 2020b), we use several

NLP metrics, viz., BLEU-N, ROUGE-L, METEOR and CIDEr to measure the

similarity between the story generated by the model and ground truth.

2. The Image and Video Advertisements (Hussain et al., 2017) contains

3,477 video advertisements and the corresponding annotations for emotion and

topic tags and action-reason statements for each video. There are a total of 38

topics and 30 unique emotion tags per video. Further, we have 5 action-reason

statements for each video for the action-reason generation task. For our exper-

iment, we use 1785 videos, due to other videos being unavailable/privated from

Youtube.

Metrics: Following (Hussain et al., 2017), for the topic and emotion classifica-

tion task, we evaluate our pipeline using top-1 accuracy as the evaluation metric.

Further, since (Hussain et al., 2017) did not use any fixed set of vocabulary for

annotations, rather they relied on annotator-provided labels, the labels are often

very close (like cheerful, excited, and happy). Therefore, based on nearness in

Plutchik’s (PLUTCHIK, 1980) wheel of emotions, we club nearby emotions and

use these seven main categories: joy, trust, fear, anger, disgust, anticipation, and

unclear. For the action-reason task, following (Hussain et al., 2017), we evaluate

our accuracy on the action and reason retrieval tasks where 29 random options

along with 1 ground truth are provided to the model to find which one is the

ground truth. Further, we also generate action and reason statements and evalu-

ate the generation’s faithfulness with the ground truth using metrics like ROUGE,

BLEU, CIDEr, and METEOR.

3. Persuasion strategy dataset: This is the dataset we contribute for un-

derstanding persuasion strategies.

Metrics: We evaluate the performance using top-1 accuracy metric. Videos

have a varied number of strategies, therefore, we consider a response to be correct

if the predicted strategy is present among the list of ground-truth strategies.

4. Long-Form Video Understanding (LVU): We et al. (Wu and Kra-
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henbuhl, 2021) released a benchmark comprising of 9 diverse tasks for long video

understanding and consisting of over 1000 hours of video. The various tasks con-

sist of content understanding (‘relationship’, ‘speaking style’, ‘scene/place’), user

engagement prediction (‘YouTube like ratio’, ‘YouTube popularity’), and movie

metadata prediction (‘director’, ‘genre’, ‘writer’, ‘movie release year’). We et al.

(Wu and Krahenbuhl, 2021) use top-1 classification accuracy for content under-

standing and metadata prediction tasks and MSE for user engagement prediction

tasks.

5. Holistic Video Understanding (HVU): HVU (Diba et al., 2020) is the

largest long video understanding dataset consisting of 476k, 31k, and 65k sam-

ples in train, val, and test sets, respectively. A comprehensive spectrum includes

the identification of various semantic elements within videos, consisting of classi-

fications of scenes, objects, actions, events, attributes, and concepts. To measure

performance on HVU tasks, similar to the original paper, we use the mean average

precision (mAP) metric on the validation set.

Next, we explain our pipeline to solve these tasks.

2.1.4.2.1 Video Verbalization To obtain a verbal representation of a video,

we employ a series of modules that extract unimodal information from the mul-

timodal video. This information is then used to prompt a generative language

model (such as GPT-3.5 (Brown et al., 2020) and Flan-t5 (Chung et al., 2022))

to generate a coherent narrative from the video. The overall pipeline is depicted

in Fig. 2.14. In the following, we delve into each component of the framework in

details.

1. Video Metadata: Understanding the context of a story is crucial, and we

achieve this by gathering information about the communicator (brand). We lever-

age the publicly available video title and channel name from the web. Additionally,

we utilize Wikidata (Vrandečić and Krötzsch, 2014), a collaborative knowledge

base that provides comprehensive data for Wikipedia, to obtain further details

such as the company name, product line, and description. This information helps

us comprehend the story elements and establish connections with the brand’s busi-

ness context. For non-advertisement videos, we skip this step and retrieve only
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the video title.

2. Text Representation of Video Frames: We extract two types of textual

information from video frames. Firstly, we capture the literal text present on the

frames. Secondly, we analyze the scene depicted in each frame to gain a deeper

understanding. In the upcoming sections, we will elaborate on both of these

aspects.

Method Frame Extraction METEOR CIDEr Rougle-l BLEU-1 BLEU-2 BLEU-3 BLEU-4
GPT-3.5 Uniform Sampling 24.8 102.4 24.3 63.8 56.4 47.2 38.6
GPT-3.5 Pyscenedetect 24.17 67.8 21.17 54.59 49.05 41.54 33.88

Table 2.5: Comparison of Pyscenedetect (Breakthrough, 2023) with uniform sam-
pling of choosing video frames. Based on downstream performance, we
can see that uniform sampling works better than Pyscenedetect

a. Visual and Scenic Elements in Frames: For videos with a duration shorter

than 120 seconds, we employ an optical flow-based heuristic using the GMFlow

model (Xu et al., 2022a) to extract keyframes. In shorter advertisement videos,

scene changes often indicate transitions in the story, resulting in keyframes with

higher optical flow values. The GMFlow model effectively captures these story

transitions. We select frames with an optical flow greater than 50 and prioritize

frames with maximum pixel velocity. However, for longer videos, this approach

yields a large number of frames that are difficult to accommodate within a limited

context. To address this, we sample frames at a uniform rate based on the na-

tive frames-per-second (fps) of the video (see Table 2.5 for a comparison between

uniform sampling and Pyscenedetect). Additionally, we discard frames that are

completely dark or white, as they may have high optical flow but lack informative

content.

Using either of these methods, we obtain a set of frames that represent the

events in the video. These frames are then processed by a pretrained BLIP-2 model

(Li et al., 2023a). The BLIP model facilitates scene understanding and verbalizes

the scene by capturing its most salient aspects. We utilize two different prompts

to extract salient information from the frames. The first prompt, “Caption this

image”, is used to generate a caption that describes what is happening in the

image, providing an understanding of the scene. The second prompt, “Can you tell

the objects that are present in the image?”, helps identify and gather information
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Generated Story : A family had the perfect idea for a Paw Patrol-themed birthday party. The kids had a blast blowing bubbles in the 
backyard and playing in the pool with a mascot in a Paw Patrol costume. The birthday boy got to play with a pinata in the backyard and a 
hot air balloon flew over the house. The kids played with a toy bike and a Paw Patrol playhouse, and the birthday girl hugged a mascot. 
They also set up a LEGO train set and a DC Comics mascot in the pool. The birthday party ended with a game of catch and a pin the 
badge on the mascot game. Everyone had a great time, and the birthday cake was a Paw Patrol-themed delight. This vlog shows that

family fun can be had at any birthday party with a little imagination.

Topic : Celebrations Emotion : Cheerful Persuasion Strategy: Social Identity, Social Proof

Action : Consider using your imagination to create a fun and 
memorable birthday party for your family or friends.

Reason : The reason is to create a uniquely fun-filled and 
memorable birthday party for your family or friends

Transcript : well hey Zuma that's the wrong pinata …. how old are you …. my birthday cake is its zoo …. paw patrol you …. got as a 
present … Thank You Marshall…. are you ready to blow out the candle…. Marshall let's push chase and the pool … Wow all the surprises 
we got…. Go first okay put on the blindfold ready …… for more fun click the red subscribe button

Figure 2.13: An example of a story generated by the proposed pipeline along with
the predicted outputs of the video-understanding tasks on the gener-
ated story. The generated story captures information across scenes,
characters, event sequences, dialogues, emotions, and the environ-
ment. This helps the downstream models to get adequate informa-
tion about the video to reason about it correctly. The original video
can be watched at https://youtu.be/_amwPjAcoC8.

about the objects depicted in each frame.

b. Textual elements in frames: We also extract the textual information present

in the frames, as text often reinforces the message present in a scene and can also

inform viewers on what to expect next (Wang et al., 2021a). For the OCR module,

we sample every 10th frame extracted at the native frames-per-second of the video,

and these frames are sent to PP-OCR (Vrandečić and Krötzsch, 2014). We filter

the OCR text and use only the unique words for further processing.

3. Text Representation of Audio: The next modality we utilize from the video

is the audio content extracted from it. We employ an Automatic Speech Recog-

nition (ASR) module to extract transcripts from the audio. Since the datasets we

worked with involved YouTube videos, we utilized the YouTube API to extract

the closed caption transcripts associated with those videos.

4. Prompting: We employ the aforementioned modules to extract textual rep-

resentations of various modalities present in a video. This ensures that we capture

the audio, visual, text, and outside knowledge aspects of the video. Once the raw
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text is collected and processed, we utilize it to prompt a generative language model

in order to generate a coherent story that represents the video. To optimize the

prompting process and enable the generation of more detailed stories, we remove

similar frame captions and optical character recognition (OCR) outputs, thereby

reducing the overall prompt size.
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Figure 2.14: The overview of our framework to generate a story from a video and perform downstream video-understanding tasks. First,
we sample keyframes from the video which are verbalized using BLIP-2. We also extract OCR from all the frames. Next,
using the channel name and ID, we query Wikidata to get company and product information. Next, we obtain automatically
generated captions from Youtube videos using the Youtube API. All of these are concatenated as a single prompt and given
as input to an LLM and ask it to generate the story of the advertisement. Using the generated story, we then perform the
downstream tasks of emotion and topic classification and persuasion strategy identification. This video can be watched at
https://youtu.be/ZBLkTALi1CI.
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The prompt template is given in Section 2.1.4.2.2. Through experimentation,

we discovered that using concise, succinct instructions and appending the text

input signals (such as frame captions, OCR, and automatic speech recognition) at

the end significantly enhances the quality of video story generation. For shorter

videos (up to 120 seconds), we utilize all available information to prompt the LLM

for story generation. However, for longer videos, we limit the prompts to closed

captions and sampled frame captions. The entire prompting pipeline is zero-shot

and relies on pre-trained LLMs. In our story generation experiments, we employ

GPT-3.5 (Brown et al., 2020), Flan-t5 (Chung et al., 2022), and Vicuna (Chiang

et al., 2023). A temperature of 0.75 is used for LLM generation. The average

length of the generated stories is 231.67 words. Subsequently, these generated

stories are utilized for performing video understanding tasks.

2.1.4.2.2 Prompt format For verbalization, a template prompt format has

been used, including all the data components as objects, captions, asr, ocr, meta-

data.

“Please write a coherent story based on the following video advertisement. Use

only the information provided and make sure the story feels like a continuous nar-

rative and at the end include one sentence about what product the advertisement

was about. Do not include any details not mentioned in the prompt.Use the ele-

ments given below to create a coherent narrative,but don’t use them as it is.The

advertisement for the company {company_name} The video is titled {title}, with

captions that include {caption}, voice-over : {transcripts}, and object recognition

descriptions : {ocr}. The following objects are present in the advertisement and

should be used to help create the story: {objects} Please exclude any empty or stop

words from the final text.”

For downstream tasks, a template prompt format with an instruction about

the specific task,the previous generated verbalization and vocabulary for the down-

stream task is prompted to the LLM. Here is the example for the topic detection

task, for other tasks context and vocab were changed accordingly.

“Given {topics} identify the most relevant topic from the dictionary keys from

topic_vocab related to the story of the video advertisement given below.Consider
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the definitions given with topics in the topic_vocab dictionary, to identify which

topic is most relevant, don’t add any extra topics that are not given in dictionary

keys and answer with just the most relevant topic. Story : {verbalization}”

Training Model Topic Emotion Persuasion Action Reason
All labels Clubbed

Random Random 2.63 3.37 14.3 8.37 3.34 3.34
Finetuned VideoMAE (Tong et al., 2022) 24.72 29.72 85.55 11.17 - -

Hussain et al. (Hussain et al., 2017) 35.1 32.8 - - - 48.45
Intern-Video (Wang et al., 2022) 57.47 36.08 86.59 5.47 6.8 7.1

Zero-shot VideoChat (Li et al., 2023c) 9.07 3.09 5.1 10.28 - -

Our Framework GPT-3.5 Generated Story +
GPT-3.5 Classifier 51.6 11.68 79.69 35.02 66.27 59.59

Zero-shot GPT-3.5 Generated Story +
Flan-t5-xxl Classifier 60.5 10.8 79.10 33.41 79.22 81.72

GPT-3.5 Generated Story +
Vicuna Classifier 22.92 10.8 67.35 29.6 21.39 20.89

Vicuna Generated Story +
GPT-3.5 Classifier 46.7 5.9 80.33 27.54 61.88 55.44

Vicuna Generated Story +
Flan-t5-xxl Classifier 57.38 9.8 76.60 30.11 77.38 80.66

Vicuna Generated Story +
Vicuna Classifier 11.75 10.5 68.13 26.59 20.72 21.00

Finetuned Generated Story +
Roberta Classifier 71.3 33.02 84.20 64.67 42.96* 39.09*

Table 2.6: Comparison of all the models across topic, emotion, and persuasion
strategy detection tasks. We see that our framework, despite being
zero-shot, outperforms finetuned video-based models on the topic clas-
sification, persuasion strategy detection and action and reason classi-
fication tasks and comes close on the emotion classification task. Fur-
ther, the Roberta classifier trained on generated stories outperforms
both finetuned and zero-shot models on most tasks. Best models are
denoted in green and runner-ups in blue .

Method Model Type METEOR CIDEr ROUGE-L BLEU-1 BLEU-2 BLEU-3 BLEU-4
Random Random Retrieval 13.1 30.2 21.4 43.1 23.1 10.0 4.8

Finetuned Narrator (Li et al., 2020b) Retrieval 19.6 98.4 29.5 69.1 43.0 25.3 15.0
EMB (Li et al., 2020b) Retrieval 19.1 88.8 28.9 64.5 39.3 22.7 13.4
BRNN (Li et al., 2020b) Retrieval 18.1 81.0 28.3 61.4 36.6 20.3 11.3

ResBRNN (Li et al., 2020b) Retrieval 19.6 94.3 29.7 66.0 41.7 24.3 14.7
Pseudo-GT+

ResBRNN-kNN (Li et al., 2020b) Retrieval 20.1 103.6 29.9 69.1 43.5 26.1 15.6

GVMF (Lu and Wu, 2022) Retrieval 20.7 107.7 30.8 70.5 44.3 26.9 15.9
Zero-shot VideoChat (Li et al., 2023c) Generative 15.49 42.9 17.88 50.00 43.30 34.76 27.21
Zero-shot GPT-3.5 Generative 24.8 102.4 24.3 63.8 56.4 47.2 38.6

Our Framework Vicuna Generative 17.4 73.9 20.9 70.49 60.0 48.25 38.20
Flant-t5-xxl Generative 4.8 34.6 10.58 7.9 6.8 5.4 4.3

Uniformly Sampled
BLIP-2 Captions Generative 21.7 108.9 24.04 55.19 48.5 40.7 33.76

Table 2.7: Comparison on story generation task on the video-story dataset. We
see that our framework despite being zero-shot outperforms all the fine-
tuned generative prior art on all metrics. Further, it also outperforms
fine-tuned retrieval models, which choose from a fixed set of frame
descriptions on most metrics. Best models are denoted in green and
runner-ups in blue .

2.1.4.2.3 Results Video Storytelling: The performance comparison be-

tween our pipeline and existing methods is presented in Table 2.7. We evalu-
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Task Model METEOR CIDEr ROUGE-L BLEU-1 BLEU-2 BLEU-3 BLEU-4

Action GPT-3.5 20.46 41.7 9.5 18.7 14.8 11.8 9.4
Action Flan-t5-xxl 15.75 61.5 13.6 50.0 34.8 26.9 21.8
Action Vicuna 21.20 42.6 7.6 16.8 13.08 10.08 7.7
Reason GPT-3.5 13.34 16.7 7.8 27.1 20.8 14.7 10.4
Reason Flan-t5-xxl 8.35 24.9 5.9 39.4 24.7 16.7 12.0
Reason Vicuna 15.82 27.9 7.75 24.6 19.3 14.1 10.3

Reason given action GPT-3.5 13.77 29.4 8.7 33.5 24.9 17.9 13.2
Reason given action Flan-t5-xxl 4.29 19.0 7.6 23.2 15.0 10.2 7.5
Reason given action Vicuna 13.62 24.4 7.61 22.6 17.7 12.8 9.2

Table 2.8: Comparison of the different zero-shot models on the action and reason
generation tasks. Note that there are no fine-tuned generative models
in the literature for this task and the number of annotated videos is too
small to train a generative model. Best models are denoted in green .

Training Model relationship way_speaking scene like_ratio view_count director genre writer year
Trained R101-slowfast+NL (Wu and Krahenbuhl, 2021) 52.4 35.8 54.7 0.386 3.77 44.9 53.0 36.3 52.5
Trained VideoBert (Sun et al., 2019a) 52.8 37.9 54.9 0.320 4.46 47.3 51.9 38.5 36.1
Trained Xiao et al. (Xiao et al., 2022) 50.95 34.07 44.19 0.353 4.886 40.19 48.11 31.43 29.65
Trained Qian et al. (Qian et al., 2021) 50.95 32.86 32.56 0.444 4.600 37.76 48.17 27.26 25.31
Trained Object Transformers (Wu and Krahenbuhl, 2021) 53.1 39.4 56.9 0.230 3.55 51.2 54.6 34.5 39.1
Zero-shot
(Ours)

GPT-3.5 generated
story + Flan-t5-xxl 64.1 39.07 60.2 0.061 12.84 69.9 58.1 52.4 75.6

Zero-shot
(Ours)

GPT-3.5 generated
story + GPT-3.5 classifier 68.42 32.95 54.54 0.031 12.69 75.26 50.84 32.16 75.96

Trained
(Ours)

GPT-3.5 generated
story + Roberta 62.16 38.41 68.65 0.054 11.84 45.34 39.27 35.93 7.826

Table 2.9: Comparison of various models on the LVU benchmark. We see that
our framework, despite being zero-shot, outperforms fine-tuned video-
based models on 8/9 tasks. Best models are denoted in green and
runner-ups in blue .

Training Model Scene Object Action Event Attribute Concept Overall
Trained 3D-Resnet 50.6 28.6 48.2 35.9 29 22.5 35.8
Trained 3D-STCNet 51.9 30.1 50.3 35.8 29.9 22.7 36.7
Trained HATNet 55.8 34.2 51.8 38.5 33.6 26.1 40
Trained 3D-Resnet (Multitask) 51.7 29.6 48.9 36.6 31.1 24.1 37
Trained HATNet (Multitask) 57.2 35.1 53.5 39.8 34.9 27.3 41.3
Zero-shot
(Ours)

GPT-3.5 generated story
+ Flan-t5-xxl classifier 59.66 98.89 98.96 38.42 67.76 86.99 75.12

Zero-shot
(Ours)

GPT-3.5 generated story
+ GPT-3.5 classifier 60.2 99.16 98.72 40.79 67.17 88.6 75.77

Table 2.10: Comparison of various models on the HVU benchmark (Diba et al.,
2020). The models scores are as reported in (Diba et al., 2020). We
see that our framework, despite being zero-shot, outperforms fine-
tuned video-based models on all the tasks. Best models are denoted
in green and runner-ups in blue .

ate multiple generative and retrieval-based approaches and find that our pipeline

achieves state-of-the-art results. It is important to note that as our method is en-

tirely generative, the ROUGE-L score is lower compared to retrieval-based meth-

ods due to less overlap with ground truth reference video stories. However, overall

metrics indicate that our generated stories exhibit a higher level of similarity to

the reference stories and effectively capture the meaning of the source video.
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Video Understanding: The performance comparison between our pipeline

and other existing methods across six tasks (topic, emotion, and persuasion strat-

egy classification, as well as action and reason retrieval and generation) is presented

in Tables 2.6 and 2.8. Notably, our zero-shot model outperforms finetuned video-

based baselines in all tasks except emotion classification. Further, our text-based

finetuned model outperforms all other baselines on most of the tasks.

Unlike the story generation task, there are limited baselines available for video

understanding tasks. Moreover, insufficient samples hinder training models from

scratch. To address this, we utilize state-of-the-art video understanding models,

VideoMAE and InternVideo. InternVideo shows strong performance on many

downstream tasks. Analyzing the results, we observe that while GPT-3.5 and Vi-

cuna perform similarly for story generation (Table 2.7), GPT-3.5 and Flan-t5 excel

in downstream tasks (Table 2.6). Interestingly, although GPT-3.5 and Vicuna-

generated stories yield comparable results, GPT-3.5 exhibits higher performance

across most tasks. Vicuna-generated stories closely follow GPT-3.5 in terms of

downstream task performance.

Next, we compare the best models (as in Table 2.6) on the LVU and HVU

benchmarks with respect to the state-of-the-art models reported in the literature.

Tables 2.9 and 2.10 report the results for the comparisons. As can be noted,

the zero-shot models outperform most other baselines. For LVU, the zero-shot

models work better than the trained Roberta-based classifier model. For HVU,

we convert the classification task to a retrieval task, where in a zero-shot way, we

input the verbalization of a video along with 30 randomly chosen tags containing

an equal number of tags for each category (scene, object, action, event, attribute,

and concept). The model is then prompted to pick the top 5 tags that seem most

relevant to the video. These tags are mapped back to the main category tags,

which are treated as the predicted labels.

Furthermore, as a comparative and ablation study of our approach, we eval-

uate the performance using only the BLIP-2 captions and audio transcriptions

(Table 2.11). Our findings highlight that generated stories leveraging both audio

and visual signals outperform those using vision or audio inputs alone. This em-

phasizes the significance of verbalizing a video in enhancing video understanding.
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Model Topic Emotion Persuasion Action Reason
All labels Clubbed

BLIP-2 Captions + Flant-t5-xxl 32.2 7.4 43.11 32.1 52.98 76.26
BLIP-2 Captions + GPT-3.5 32.7 7.9 76.69 30.1 49.91 58.71
Audio Transcription + Flant-t5-xxl 49.37 10.1 63.56 21.9 66.17 79.68
Audio Transcription + GPT-3.5 32.88 6.4 75.97 32.25 64.98 61.78

Table 2.11: Ablation study of using only visual (caption) or audio (transcripts)
and LLMs for downstream tasks. It can be noted that the overall
model does not perform as well (compared to Table 2.6) when using
only audio or scene description without generating story.

2.1.4.2.4 Ablation Among the different components of information input present

in the prompt, the LLM utilizes them differently while constructing the verbaliza-

tion for the videos.For this experiement we use a subset of (Hussain et al., 2017)

dataset, considering videos that have spoken audio present.

We use ROUGE-l to get the longest common subsequence (LCS) between

the generated verbalization and the individual components,which captures the

overlapping content, providing an indication of their semantic similarity.

As generated verbalizations are abstractive as compared to extractive, we also

use cosine similarity between the Roberta embeddings of the generated verbaliza-

tion and the individual components.

We find that despite the order of the components in the prompt, the LLMs

tend to utilize the audio components in the videos, in an extractive way.

Model Top-5 Accuracy mAP
VideoMAE 25.57 24.79
InternVideo 7.477 15.62

GPT-3.5 Generated Story + GPT-3.5 34.2 27.53
Vicuna Generated Story + GPT-3.5 31.54 27.24
GPT-3.5 Generated Story + Flant5 37 27.96
Vicuna Generated Story + Flant5 31.13 27.32

Table 2.12: Top-5 accuracy, and mAP for persuasion strategy detection task

2.1.4.2.5 A few examples of the stories generated using our method

1. “Cathy 30 Master” by Grand Canyon University (https://www.youtube.co

m/watch?v=lPdD8NvVfw0): Kathy Ames had always wanted to pursue a doctoral

degree but was unsure about the time commitment. When she discovered Grand

59

https://www.youtube.com/watch?v=lPdD8NvVfw0
https://www.youtube.com/watch?v=lPdD8NvVfw0


Canyon University, she knew she had found the perfect fit. Grand Canyon Uni-

versity offered a flexible schedule that would allow her to balance her personal

and family life with her studies. She - along with other students - gathered in the

classroom, excitedly listening to their coach, Scott Saunders, explain the program.

Afterward, Kathy made her way to the library and settled into a chair with her

laptop.

She studied diligently, surrounded by her peers and classmates. In the evenings,

she met with her peers around the table to discuss the topics of the day. Everyone

was always eager to help and support each other. After a long day, Kathy made

her way back to her living room where she relaxed on the couch with a glass of

water and a lamp providing a soothing light.

Kathy was grateful for the opportunity to pursue her dream at Grand Canyon

University. She was able to learn from experienced faculty and gain real-world

experience that would prepare her for success after graduation.

The advertisement for Grand Canyon University was about offering a private,

Christian education at an affordable price.

2. “Today is the Day for Doing | The Home Depot” by Home Depot (https:

//www.youtube.com/watch?v=f_6QQ6IVa6E): The woman holding the book

stepped onto the patio and looked up to the sky. She was ready to take on the

day. Taking out her phone, she opened the furniture catalog app, scrolling through

the various designs. She quickly decided on the perfect pieces to brighten up her

home. Next, she headed to The Home Depot for the supplies she needed. As she

entered the store, the woman was delighted to find all the tools and materials she

needed, from the Ryobi Cordless Vacuum to the Leaf Blower. She was even more

excited when she spotted the Splatter an object recognition tool that allowed her

to easily find the perfect paint color for her project. With her shopping done,

the woman made her way to the checkout line with a cup of coffee in hand. She

couldn’t wait to get to work and make her home more beautiful. She knew that

with the help of The Home Depot, Today was the Day for Doing. This advertise-

ment was for The Home Depot - the one-stop-shop for all your home improvement

needs.
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3. “October 2018 Color of the Month: Shell White - Sherwin-Williams” by Sherwin-

Williams (https://www.youtube.com/watch?v=PJlHiQJBDMw): The advertise-

ment for the company Sherwin-Williams opens on a kitchen table strewn with

shells and wicker baskets, with two glasses of iced water beside them. A vase with

a blue pattern sits in the foreground, and a person holds up a phone with the

Sherwin-Williams logo on the screen. A girl appears from behind a white sheet,

peeking out of a white tent as if to signify the timelessness and neutrality of this

color. The voice-over begins, as the camera pans to a living room with a staircase,

and then to a dining room with a white table, chairs, and a white vase. The words

“Color of the Month: Shell White, Sherwin-Williams” appear on the screen, as

the camera zooms in on the vase. The words are followed by Öur app makes it

a snap,r̈eferring to Color Snap, the company’s new way of painting a home. The

advertisement ends with the Sherwin-Williams logo, emphasizing the company’s

commitment to excellence in home painting. This advertisement was promoting

the company’s color of the month, Shell White.

4. “Side-by-side comparison of SolidWorks w/NVIDIA Quadro FX 1700 vs. Quadro

2000” by NVIDIA (https://www.youtube.com/watch?v=CDjBIt70fp4): The

story began with a green light glowing in the dark, symbolizing the presence of a

powerful technology that can change the way we work. This technology was an ad-

vanced graphics card, the NVIDIA Quadro FX 1700. It was compared side-by-side

with its successor, the Quadro 2000, and it was clear that the Quadro 2000 was far

more powerful. The Quadro FX 1700 had a qt - x700 vs qt - x700 capacity, while

the Quadro 2000 had a green light that shone brighter and further than before.

As the comparison was being made, the results were clear: the Quadro 2000 was

the superior product. This advertisement for the company NVIDIA showcased

the power of the Quadro 2000, and the improved performance it could bring to

an organization. The advertisement concluded with a green light, signaling that

NVIDIA had the answer to improving workflows. The product the advertisement

was about was the NVIDIA Quadro 2000.”

5. “Training sessions in the nature - Mary Kom | Priyanka Chopra | In Cinemas

NOW” by Viacom 18 Studios (https://www.youtube.com/watch?v=SXTSJC5N
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rLs): Mary Kom was training hard to make her mark as a boxer, and she had

nothing but her focus and determination to help her succeed. She was a force to be

reckoned with in the boxing ring and her hard work was soon paying off.But she

knew that she had to take her training to the next level if she wanted to win the

boxing championship. That’s when she decided to take her own advice and step

out of her comfort zone. She headed out to the woods, determined to make the

most of her time in nature.The woods were a perfect place for Mary to challenge

herself physically. She was soon standing on the rocks of a river, pushing her body

to its limits with every movement. She was standing tall, her black top glinting

in the sunlight, and her energy was palpable. The sun was setting, and it was the

perfect time to relax and unwind.Finally, she ended her day with a yoga routine,

her body twisting and turning in a beautiful display of strength and grace. It was

a day of hard work and fun, and it left Mary feeling inspired and ready to take on

anything. The video was an advertisement for the movie Mary Kom, released by

Viacom18 Studios.”

2.1.4.2.6 Hallucinations Present In the Automatically Generated Sto-

ries The current large language models , do hallucinate or produce imaginary

outputs. However, they are able to capture the gist of the videos, helping improve

on downstream tasks. Some examples are shown below:

1. “The Fundamentals Of Caring | Clip: ”Perverts” | Netflix” by Netflix (http
s://youtu.be/_Usyxm9S_Jg)
(a) Story: The woman in the advertisement is standing in front of a red

background, smiling brightly. She and a man sitting at a table look
content, as if they’ve just come from a conversation. The Netflix logo
is visible, indicating that the advertisement is for the company and
its products. The voice-over for the advertisement introduces Selena
Gomez as the star of the trailer for the popular Twilight Saga. Her
popularity has made her a perfect choice to promote Netflix’s products.
The voice-over then informs viewers that the company’s streaming ser-
vice is not available. The man and woman in the advertisement seem to
have a strong connection, and we can infer that they are friends. Per-
haps they share an understanding of each other’s struggles, since they
both seem to be comfortable and happy with each other. The advertise-
ment ends with the Netflix logo, leaving viewers with the knowledge
that they can find solace and understanding in the company’s prod-
ucts, no matter what they are going through. The advertisement was
for Netflix.”
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(b) Hallucinations: The story falsely attributes “Selena Gomez” to “Twi-
light Saga”. The LLMs often confuse named entity linkages.

2. “Back-to-School 2016” by Academy Sports + Outdoors (https://youtu.
be/SZwWT5lnHf8)
(a) Story: A young girl is walking through her bedroom when she notices a

man running up the stairs in his sneakers. She is intrigued and follows
him, curious to see where he is going. Arriving at the top of the stairs,
she finds a young man standing with his backpack. Across the room,
she sees a girl in a dress standing in front of a mirror. The girl smiles
and looks content. At that moment, the voice-over of the Academy
Sports + Outdoors ad can be heard: ”Academy Sports and Outdoors
is the place to get all the best brands in thousands of combinations for
back to school. Right stuff, low price, every day.” Suddenly, a black cat
can be seen flying in the sky and the girl in the tank top is now standing
in front of the mirror. The man is wearing blue pants and sneakers,
and the shoes, rug, and sneakers of the apartment are visible. The girl
smiles and looks content. The scene shifts to the bedroom where the
bed, dresser, and mirror are present, along with a sign for Academy
Sportswear. This advertisement for Academy Sports + Outdoors was
about the company’s back-to-school collection of products. It show-
cased how Academy Sports + Outdoors provides the right stuff, at a
low price, every day, for students to get ready for school.

(b) The scene with a black cat is hallucinated though not mentioned in the
prompt

3. “Many Worlds, One Home l Anime 2019 l NX” By Netflix (https://yout
u.be/B63ubKGNqos)
(a) Story: The advertisement by Netflix, titled ”ManyWorlds, One Home”,

is a stunning vision of many different universes. We see a man standing
on a red moon, a desert landscape, and a live performance by Adam
Sandler. Purple backgrounds with the word ”worlds” convey the idea
of many possibilities, while a boy playing with a ball in front of a statue
shows a more peaceful and homely side to this. As the night falls, a
man is standing on a car, and the Ultraman. There are also glimpses
of Tse Seeds, Devilman Crybaby, Saint Seiya: Knights of the Zodiac,
Eden Vs. Eden, Carole and Tuesday, Aggretsuko, Seis Manos, Godzilla,
Castlevania, B: The Beginning, Baki, Cannon Busters, Rilakkuma and
Kaoru, Beastars, and Ultramarine Magmell. We see a teddy bear,
knights of the zodiac, a character walking in the water, a man in a
snowy area, a pair of shoes, a man running away from the fire, the
moon, a man wearing a suit with a green light, eyes being the only thing
that can be seen, birds flying in the sky, a red and black background
with a red light, bats and castles, the eyes, a man holding a gun, a man
flying in the air, a face, a girl with long hair, and two hands. All of
this culminates to signify the many different worlds that one can find
”home”, and the advertisement concludes with the Netflix logo. This
advertisement for Netflix captures the idea of many possibilities and of
being at home in a single place.
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(b) Hallucination: Blip2 hallucinates entities such as “Adam Sandler” who
is not associated with the advertisement. But it causes the generated
story to have the same association.

4. “African Cats: Herding Cats - Clip” by Walt Disney Studios (https://yo
utu.be/WCIEmrN8ot4)
(a) Story: The sun shone brightly in the savanna as the cheetah cub frol-

icked in the grass. Suddenly, a cheetah emerged from the shadows. The
cheetah and it’s cub plan to chase the gazzeles. Despite the presence of
death, life in the wild continued on, just as it had for centuries. This
story is featured in the advertisement for Walt Disney Studios, which
captures the beauty and unpredictable nature of life in the African
savanna. This advertisement ultimately serves to promote the film
African Cats, which tells the story of a cheetah family as they strive
to protect their respective prides against a variety of obstacles in the
wild.

(b) Hallucination: The generated caption “a fox cub is playing in the grass
cheetah eats in the wild” was insufficient to capture the overall infor-
mation of the video, however, due to the presence of ASR and world
knowledge of the LLM. The LLM is able to generate a coherent story.

5. “Bright & Dreamy: Pastel Tint| Ulta Beauty” by ultabeauty (https://yo
utu.be/Lh5n4HcLvCU)
(a) Story: The woman in the Ulta Beauty advertisement skillfully applied

makeup to her face, creating a beautiful pastel tint. With each brush
stroke, her look became brighter and more dreamy. She beamed with
confidence and joy, her face glowing with beauty. As the advertise-
ment continued, she highlighted her eyes and cheeks with subtle pastel
shades, adding to the stunning effect. With each addition, her face lit
up with a vibrant luminosity. When she was finished, her face was a
work of art, the perfect combination of bright and dreamy. The Ulta
Beauty advertisement showcased the power of a perfect pastel tint, and
how it can enhance any look. This advertisement was for Ulta Beauty.

(b) Hallucination: The video contains only music. However, the generated
verbalization can pick the advertisement’s gist.

6. “Round Brilliant Diamond Hoop Earrings 14kt White Gold” by Costco ht
tps://youtu.be/VdhRmVnbqQo
(a) Story: Jackie had been wanting diamond hoop earrings for what seemed

like forever. She had been dreaming of the perfect pair that she could
wear on special occasions and that would bring out the best in her.
One day Jackie happened to come across an advertisement for Costco,
which featured a pair of Round Brilliant Diamond Hoop Earrings in
14kt White Gold. She immediately knew this was the perfect pair
for her. The advertisement had a voice-over that said, “These earrings
sparkle with glamour and sophistication.” Jackie was mesmerized by the
sparkle of the diamonds, and she was sure anyone who saw them would
also be taken in by their beauty. Jackie quickly decided to purchase the
earrings. She was sure they would make the perfect accessory for any
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special occasion. From date nights to family gatherings, she knew these
earrings would make her look simply stunning. The advertisement for
the Costco Round Brilliant Diamond Hoop Earrings in 14kt White
Gold proved to be the perfect choice for Jackie. They not only added a
touch of glamour and sophistication to her wardrobe, but made her feel
extra special when she wore them. The advertisement for the company
Costco was for a pair of Round Brilliant Diamond Hoop Earrings in
14kt White Gold.

(b) Hallucination: The video has no audio transcription, and minimal vi-
sual information. However the LLM hallucinates a story, maintaining
the essence of the advertisement. It also attributes a false voice-over
which is not present in the video.

2.2 MINIMAL: Mining models for universal ad-

versarial triggers

2.2.1 Abstract

It is well known that natural language models are vulnerable to adversarial at-

tacks, which are mostly input-specific in nature. Recently, it has been shown that

there also exist input-agnostic attacks in NLP models, special text sequences called

universal adversarial triggers. However, existing methods to craft universal trig-

gers are data intensive. They require large amounts of data samples to generate

adversarial triggers, which are typically inaccessible by attackers. For instance,

previous works take 3000 data samples per class for the SNLI dataset to generate

adversarial triggers. In this paper, we present a novel data-free approach, MINI-

MAL, to mine input-agnostic adversarial triggers from models. Using the triggers

produced with our data-free algorithm, we reduce the accuracy of Stanford Sen-

timent Treebank’s positive class from 93.6% to 9.6%. Similarly, for the Stanford

Natural Language Inference (SNLI), our single-word trigger reduces the accuracy

of the entailment class from 90.95% to less than 0.6%. Despite being completely

data-free, we get equivalent accuracy drops as data-dependent methods.
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2.2.2 Introduction

In the past two decades, deep learning models have shown impressive performance

over many natural language tasks, including sentiment analysis (Zhang et al.,

2018b), natural language inference (Parikh et al., 2016), automatic essay scoring

(Kumar et al., 2019), question-answering (Xiong et al., 2017), keyphrase extraction

(Meng et al., 2017), etc. At the same time, it has also been shown that these

models are highly vulnerable to adversarial perturbations (Behjati et al., 2019).

The adversaries change the inputs to cause the models to make errors. Adversarial

examples pose a significant challenge to the rising deployment of deep learning

based systems¶.

Commonly, adversarial examples are found on a per-sample basis, i.e., a sep-

arate optimization needs to be performed for each sample to generate an adver-

sarially perturbed sample. Since the optimization needs to be performed for each

sample, it is computationally expensive and requires deep learning expertise for

generation and testing. Lately, several research studies have shown the existence

of input-agnostic universal adversarial trigger (UATs) (Moosavi-Dezfooli et al.,

2017; Wallace et al., 2019). These are a sequence of tokens, which, when added to

any example, cause a targeted change in the prediction of a neural network. The

existence of such word sequences poses a considerable security challenge since the

word sequences can be easily distributed and can cause a model to predict incor-

rectly for all of its inputs. Moreover, unlike input-dependent adversarial examples,

no model access is required at the run time for generating UATs. At the same

time, the analysis of universal adversaries is interesting from the point of view

of model, dataset analysis and interpretability (§2.2.6). They tell us about the

global model behaviour and the general input-output patterns learnt by a model

(Wallace et al., 2019).

Existing approaches to generate UATs assume that an attacker can obtain the

training data on which a targeted model is trained (Wallace et al., 2019; Behjati

et al., 2019). While generating an adversarial trigger, an attacker firstly trains

a proxy model on the training data and then generates adversarial examples by
¶The code and reproducibility steps are given in https://github.com/midas-research/

data-free-uats
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Figure 2.15: Two step process to generate universal adversarial triggers. First, we gen-
erate multiple class impressions for each class c. For this, we take multiple
initialization sequences differing in starting word and length. After gener-
ating class impressions, we use them as our dataset for generating universal
adversarial triggers.

using gradient information. Table 2.13 presents the data requirements during

training for the current approaches. For instance, to find universal adversaries on

the natural language inference task, one needs 9000 training examples. Also, the

adversarial ability of a perturbation has been shown to depend on the amount

of data available (Mopuri et al., 2017, 2018a). However, in practice, an attacker

rarely has access to the training data. Training data are usually private and

hidden inside a company’s data storage facility, while only the trained model is

publicly accessible. For instance, Google Cloud Natural Language (GCNL) API

only outputs the scores for the sentiment classes (Google, 2021) while the data

on which the GCNL model was trained is kept private. In this real-world setting,

most of the adversarial attacks fail.

In this paper, we present a novel data-free approach for crafting universal ad-

versarial triggers to address the above issues. Our method is to mine a trained

model (but not data) for perturbations that can fool the target model without any

knowledge about the data distribution (e.g., type of data, length and vocabulary

of samples, etc.). We only need access to the embedding layer and model outputs.

Our method achieves this by solving first-order Taylor approximation of two tasks:
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first, we generate “class-impressions” (§2.2.4.1), which are reconstructed text sen-

tences from a model’s memory representing the learned parameters for a certain

data class; and second, we mine universal adversarial triggers over these generated

class impressions (§2.2.4.2). Class-impression can be considered as the general rep-

resentation of samples belonging to a particular class (Fig 2.19) and are used to

emulate samples belonging to that class in our method. The concept of data

leaving its impression on a trained model has also been observed in prior work

in model inversion attacks in computer vision (Micaelli and Storkey, 2019; Nayak

et al., 2019). We build on that concept to mine universal adversarial triggers.

We propose a combination of general model inversion attacks methodology with

trigger generation to mine data-free adversarial triggers and show our results for

several NLP models (Fredrikson et al., 2015; Tramèr et al., 2016).

The major contributions of our work are summarized as:

- For the first time in the literature, we propose a novel data-free approach, MIN-

IMAL (MINIng Models for AdversariaL triggers), to craft universal adversarial

triggers for natural language processing models and achieve state-of-the-art suc-

cess (adversarial) rates (§2.2.5). We show the efficacy of the triggers generated

using our method on three well-known datasets and tasks, viz., sentiment analysis

(§2.2.5.1) on Stanford Sentiment Treebank (SST) (Socher et al., 2013), natural

language inference (§2.2.5.2) on the SNLI dataset (Bowman et al., 2015), and

paraphrase detection (§2.2.5.3) on the MRPC dataset (Dolan and Brockett, 2005).

- We use both class impressions and universal adversarial triggers generated by

our models to try to understand the models’ global behaviour (§2.2.6). We ob-

serve that the words with the lowest entropy (i.e., the most informative features)

appear in the class impressions (Fig. 2.18). We find that these low entropy word-

level features can also act as universal adversarial triggers (Table 2.24). The

class-impression words are good representations of a class since they form distinct

clusters in the manifold representations of each class.
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2.2.3 Related Work

Universal Adversarial Attacks: Moosavi-Dezfooli et al. (2017) showed the

existence of universal adversarial perturbations. They showed that a single per-

turbation could fool DNNs most of the times when added to all images. Since

then, many universal adversarial attacks have been designed for vision systems

(Khrulkov and Oseledets, 2018; Li et al., 2019; Zhang et al., 2021). To the best

of our knowledge, there are only three recent papers for NLP based universal ad-

versarial attacks, and all of them require data for generating universal adversarial

triggers (Wallace et al., 2019; Song et al., 2021; Behjati et al., 2019). In simulta-

neous works, (Wallace et al., 2019; Behjati et al., 2019) show universal adversarial

triggers for NLP. Song et al. (2021) extend it to generate natural (data-distribution

like) triggers. We compare our work with (Wallace et al., 2019) since they show

improved adversarial success rates over (Behjati et al., 2019). We leave mining

natural triggers from models as a future study. Our results demonstrate compara-

ble performance as (Wallace et al., 2019) but without using any data. Table 2.13

mentions the data requirement of (Wallace et al., 2019).
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Figure 2.16: Class Impression Generation (CIG) Algorithm. We start with an
initial sequence of “the the ... the” and continuously update it based
on its gradient with respect to output probabilities (Eq. 2.4). The
final sequence we get represents the class impression CIc for the class
c.
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While there are many proposed classifications of adversarial attacks, from the

point of view of our work, they can be seen in two ways: (a) data-based attacks;

(b) data-free attacks. Data-based computer vision attacks depend on training

and validation dataset to craft adversaries, while data-free attacks rely on other

signals. There are some data-free approaches in computer vision, for example, by

maximizing activations at each layer (Mopuri et al., 2017, 2018a), class activations

(Mopuri et al., 2018b), and pretrained models and proxy dataset (Huan et al.,

2020). However, there has been no work in NLP systems for data-free attacks.

2.2.4 The Proposed Approach

In summary, our algorithm of crafting data-free universal adversarial triggers is

divided into two steps, as shown in Fig 2.15. First, we generate a set of class-

impressions (§2.2.4.1) (Fig 2.16) for each class. These natural language examples

represent the entire class of samples and are generated solely from the weights

learnt by the model. Second, we use the set of class impressions generated in the

first step to craft universal adversarial triggers corresponding to those impressions

(§2.2.4.2) (Fig 2.17).

2.2.4.1 Class-Impressions Generation (CIG) Algorithm

To generate the class impression CIc for a class c, we propose to maximize the

confidence of the model f(x) for an input text sequence tc. Formally, we maximize:

CIc = argmax
tc

Etc∼V [L(c, f(tc))] , (2.3)

where tc is sampled from a vocabulary V . The input tc in NLP is not continuous,

but is made up of discrete tokens. Therefore, we use the first-order Taylor approxi-

mation of Eq. 2.3 (Michel et al., 2019; Ebrahimi et al., 2018; Wallace et al., 2019).

Formally, for every token ecii in a class impression CIc, we solve the following

equation:

ecii = argmin
e′i∈V

[e′i − ecii ]
⊺ ∇ecii

L, (2.4)
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Dataset Validation Size
(Real samples)

Impressions Size
(Generated samples)

SST 900 300
SNLI 9000 400
MRPC 800 300

Table 2.13: Number of Samples required to generate Universal Adversarial Trig-
gers for each Dataset. In a data-based approach like (Wallace et al.,
2019), validation set (column 2) is used to generate the UATs. The
third column lists the number of queries we make to generate artificial
samples. These artificial samples are then used to craft UATs. Note
that no real samples are required for our method.

where V represents the set of all words in the vocabulary, and∇ecii
L is the gradient

of the task loss. We model the Eq. 2.4 as an iterative procedure by starting

out with an initialisation value of ecii as ‘the’. We then continually optimize it

until convergence. For computing the optimal e′i, we take |V| d-dimensional dot

products where d is the dimensionality of the token embedding. We use beam-

search for finding the optimal sequence of tokens e′i to get the minimum loss in

Eq. 2.4. We score each beam using the loss on the batch in each iteration of the

optimization schedule.

Finally, we convert the optimal ecii back to their associated word tokens.

Fig. 2.16 presents an overview of the process. It shows the case where we ini-

tialized ecii with a sequence of “the the .... the” and then follow the optimization

procedure for finding the optimal CIc for the class c‖.

To generate class impressions for the models that use contextualized embed-

dings like BERT (Devlin et al., 2019), we perform the above optimization over

character and sub-word level. We also replace the context-independent embed-

dings in Eq. 2.4 with contextual embeddings as obtained from BERT after passing

the complete sentence to it.

We generate multiple class impressions for each class for all models by vary-

ing the number of tokens and the starting sequence. This gives us a number of

class impressions for the next step where we generate triggers over these class

impressions.
‖We vary the initialization sequence and sequence length to generate multiple class impres-

sions for the same class
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2.2.4.2 The Universal Trigger Generation (UTG) Algorithm

Class Class Impression

Positive energizes energizes captivated energizes
enthrall eye-catching captivating aptitude artistry passion

Positive captures soul-stirring captivates mesmerizing soar amaze
excite amaze enthrall thrill captivating impress artistry accomplishments

Negative spiritless ill-constructed ill-conceived ill-fitting
aborted fearing bottom-rung woe-is-me uncharismatically pileup

Negative laziest third-rate insignificance stultifyingly untalented
hat-in-hand rot leanest blame direct-to-video wounds urinates

Table 2.14: Class Impressions for BiLSTM-Word2Vec Sentiment Analysis Model. Note
that the words in the class impression examples highly correspond to the
respective sentiment classes.

After generating class impressions in the previous step, we generate adversarial

triggers as follows. From the last algorithm, we get a batch of class impressions

CIc for the class c. The task of crafting universal adversarial triggers is defined

as minimizing the following loss function:

argmin
tadv

Et∼CIc [L(c̃, f(tadv; t))] , (2.5)

where c̃ denotes target class (distinct from the class c), f(tadv; t) denotes the

evaluation of f(x) on the input containing concatenation of adversarial trigger

tokens at the start of the text t. The text t is sampled from the set of all class

impressions CIc. Again, we use the Taylor approximation of the above equation.

Therefore, we get:

eadvi = argmin
e′i∈V

[e′i − eadvi ]
⊺ ∇eadvi

L, (2.6)

where V represents the set of all words in the vocabulary, and∇eadvi
L is the average

gradient of the task loss over a batch. We model Eq. 2.6 as an iterative procedure

where we initialize eadvi with an initialisation value of ‘the’. For computing the

optimal e′i, similar to the previous step, we take |V| d-dimensional dot products

where d is the dimensionality of the token embedding. We use beam-search for

finding the optimal sequence of tokens e′i to get the minimum loss in Eq. 2.6. We

score each beam using the loss on the batch in each iteration of the optimization

schedule. Additionally, to generate impressions of varying difficulty, we randomly

select the token from a N-sized beam of possible minimal candidates, instead of
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the least scoring candidate.

Type Direction Trigger Acc.
Before

Acc.
After

Data-based P → N worthless
endurance useless 93.6 9.6

Data-free P → N useless
endurance useless 93.6 9.6

Data-based N → P kid-empowerment
hickenlooper enjoyable 80.3 7.9

Data-free N → P compassionately
hickenlooper gaghan 80.3 8.1

Table 2.15: The table reports the accuracy drop for the BiLSTM-Word2Vec sen-
timent analysis model after prepending 3-word adversarial triggers
generated using MINIMAL and data-based methods.

Type Direction Trigger Acc.
Before

Acc.
After

Data-free P → N useless
endurance useless 86.2 32

Data-free N → P compassionately
hickenlooper gaghan 86.9 35

Table 2.16: Accuracy drop for transfer attack with data-free UAT generated by
our method. We prepend 3-word adversarial triggers to the SST
BiLSTM-ELMo model.

Finally, we convert the optimal eadvi back to their associated word tokens.

Fig. 2.17 presents an overview of the process. Similar to Sec. 2.2.4.1, we initialize

the iterative algorithm with a sequence (eadv) of “the the .... the”** and then

follow the optimization procedure to find the optimal eadv. We handle contextual

embeddings in a similar manner as in Sec. 2.2.4.1. Next, we show the application

of the algorithms developed on several downstream tasks.

2.2.5 Experiments

We present our experimental setup and the effectiveness of the proposed method

in terms of the success rates achieved by the crafted UATs. We test our method

on several tasks including sentiment analysis, natural language inference, and

paraphrase detection.
**We vary the initialisation sequence and sequence length to generate multiple adversarial

triggers
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Class Class Impressions

Contradiction

Hypothesis: lynched cardinals giraffes lynched
lynched a mown extremist natgeo illustration
Premise: zucchini restrooms swimming golds

weekday rock 4 seven named dart

Entailment

Hypothesis: civilization va physical supersonic
prohibits biathlon body land muffler mobility

Premise: gecko robed abroad teetotalers blonds
pluggling sprinter speeds corks dogtrack

Neutral

Hypothesis: porters festivals fluent a playgrounds
ratatouille buttercups horseback popularity waist

Premise: bowler teaspoons group tourism tourism
spiritual physical physical person

Table 2.17: Class Impressions for ESIM model trained for the Natural Language
Inference Task

2.2.5.1 Sentiment Analysis

We use the Stanford Sentiment Treebank (SST) dataset (Socher et al., 2013).

Previous studies have extensively used this dataset for studying sentiment anal-

ysis (Devlin et al., 2019; Cambria et al., 2013). We use two models on this

dataset: Bi-LSTM model (Graves and Schmidhuber, 2005) with word2vec emeb-

ddings (Mikolov et al., 2018), Bi-LSTM model with ELMo embeddings (Peters

et al., 2018). The same models have been used in previous work (Wallace et al.,

2019) for generating data-dependent universal adversarial triggers. The models

achieve an accuracy of 84.4% and 86.6% over the dataset, respectively. We com-

pare our algorithm with (Wallace et al., 2019) since it is demonstrated to work

better than other works (Behjati et al., 2019).

Class Impressions: First, we generate class impressions for the model. Ta-

ble 2.14 presents 2 class impressions per class. As can be seen from the table, the

words selected by the CIG algorithm highly correspond to the class sentiment.

For instance, the algorithm selects positive words such as energizes, enthrall for

the positive class, and negative words such as spiritless, ill-conceived, laziest for

the negative class. We posit that the class impressions generated through our

algorithm can be used to interpret what a model has learnt.

UAT: Next, using the class impressions generated for the models, we generate

universal adversarial triggers with the UTG algorithm (Sec 2.2.4.2). In order to
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Class Type: Entailment→Neutral
Original Accuracy: (ESIM: 91%, DA: 90.3%)

Data-Inputs Data-Type Trigger ESIM DA

Hypothesis and
Premise

Data-Based
nobody

whatsoever
cats

0.06
0.6
0.69

0.18
43
0.7

Data-Free
nobody

no
mars

0.06
0.1
0.1

0.18
2

0.3

Hypothesis-Only Data-Free
monkeys
zebras
cats

0.7
0.5
0.69

0.54
0.39
0.7

Class Type: Neutral→Contradiction
Original Accuracy: (ESIM: 88%, DA: 80%)

Data-Inputs Data-Type Trigger ESIM DA

Hypothesis and
Premise

Data-Based
shark
moon

spacecraft

18
17
12

28
13
8.4

Data-Free
skydiving
orangutan
spacecraft

14
12
12

20
75
8.4

Hypothesis-Only Data-Free
sleep

drowning
spacecraft

11
15
12

19
29
8.4

Class Type: Contradiction→Entailment
Original Accuracy: (ESIM: 79%, DA: 85%)

Data-Inputs Data-Type Trigger ESIM DA

Hypothesis and
Premise

Data-Based
expert
siblings

championship

64
66
65

73
68
74

Data-Free
inanimate

final
championships

67
66
68

82
68
85

Hypothesis-Only Data-Free
humans

semifinals
championship

70
68
65

79
74
74

Table 2.18: We prepend a single word (Trigger) to SNLI hypotheses. We display
the top 3 triggers created using both Validation set and Class Impres-
sions for ESIM and show their performance on the DA. The original
accuracies are mentioned in brackets.
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Class Class Impressions

Paraphase
Detected

Sentence 1:nintendo daredevil bamba bamba the
the lakers dodgers weekend rhapsody seahawks

Sentence 2: nintendo multiplayer shawnee dodgers
anthem netball the olympics soundtrack

overture martial

Paraphase
Detected

Sentence 1: mon submitted icus submit arboretum
templar desires them requirements kum

Sentence 2: lection rahul organizers postgraduate
qualifying your exercises signifies its them

No Paraphase
Detected

Sentence 1: b 617 matrices dhabi ein wm spelt
rox a proportional alamo swap

Sentence 2: drilled traced 03 02 said
mattered million 0% 50% corporations a a

No Paraphase
Detected

Sentence 1: cw an hung kanda singapore
tribu chun mid 199798 nies bula latvia

Sentence 2: came tempered paced times than
an saying say shone say s copp

Table 2.19: Class Impressions for ALBERT model trained for the Microsoft Re-
search Paraphrase Corpus

avoid selecting construct-relevant words, we remove such words†† from our vocab-

ulary for this task. Table 2.15 shows the results for the performance of adversarial

triggers generated using our method and those by the data-based approach of

(Wallace et al., 2019). Despite being completely independent of data, we achieve

comparable accuracy drops as (Wallace et al., 2019). We are able to reduce the

sentiment prediction accuracy by more than 70% for both the classes.

Transfer of Mined UATs: We check whether the triggers mined from one

model also work on other models. For this, we test the triggers mined from

BiLSTM-Word2Vec model on the BiLSTM-ELMo model. Table 2.16 notes the

results for the same. The triggers reduce the accuracy for both the classes by

more than 50%. This is significant since they are completely mined from the

model without any information of the underlying distribution. We also compare

the attack success rate as a function of trigger length (Fig. 2.20).
††https://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html#lexicon

76

https://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html#lexicon


2.2.5.2 Natural Language Inference

For natural language inference, we use the well-known Stanford Natural Language

Inference (SNLI) Corpus (Bowman et al., 2015). We use two models for our analy-

sis on this task: Enhanced Sequential Inference Model (ESIM) (Chen et al., 2017)

and Decomposable Attention (DA) (Parikh et al., 2016) with GloVe embeddings

(Pennington et al., 2014). The accuracies reported by ESIM is 86.2%, and DA is

85%.

Class Impressions: Modelling natural language inference involves taking in two

inputs: premise and hypothesis and deciding the relation between them. The

relation can be one amongst entailment, contradiction, and neutral. Following

the algorithm in Sec. 2.2.4.1, we find both premise and hypothesis together after

starting out from a common initial word sequence. Through this, we get a typical

premise and its corresponding hypothesis for the three output classes (entailment,

contradiction, and neutral).

One example per class for the ESIM model is given in Table 2.17. Unlike sen-

timent analysis, class impressions for SNLI are not readily interpretable. This is

because that while a sentence from the SST corpus can be considered a combina-

tion of latent sentiments, the same cannot be assumed of a hypothesis sentence

from the SNLI corpus. A statement by itself is not a characteristic hypothesis (or

premise). For instance, the SST sentence “You’ll probably love it.” is a character-

istic positive polarity sentence and can be understood to be so by the word ‘love’.

The same cannot be said for the SNLI premise sentence “An older and younger

man smiling.” SNLI class impressions give us a glance into a model’s learnt deep

manifold representation of premise-hypothesis pair. They are generally far away

from the training data. Strong priors about the natural training distribution might

be needed to make them closer to the training data, . We leave this task for future

investigation.

UAT: After obtaining a batch of class impressions from the previous step,

we craft the universal adversarial triggers. A comparison of the results for UATs

generated using our method, and those of (Wallace et al., 2019) are given in

Table 2.18. As can be seen, we achieve comparable results as (Wallace et al.,
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2019). A single word trigger is able to reduce the accuracy of the entailment class

from 90.3% to 0.06%.

Hypothesis Only UATs: Several recent research studies have indicated that

the annotation protocol for SNLI leaves artefacts in the dataset such that by giv-

ing just hypothesis, one can obtain 67% accuracy (Gururangan et al., 2018; Po-

liak et al., 2018). Following that line of study, we generate only the hypothesis

class impressions using the CIG algorithm. Then, we generate triggers over the

hypothesis-only generated class impressions. Table 2.18 notes the results for the

hypothesis-only attacks. We find that hypothesis-only triggers perform equiva-

lently to hypothesis and premise attacks. This provides further proof that there

are many biases in the SNLI dataset and more importantly, the models are using

those biases as class representations and adversarial triggers actively exploit these

(§2.2.6).

Transfer of Mined UATs to Other Models: To determine how the triggers

mined from one model transfer to another, we test both data-based and our data-

free triggers generated using the ESIM model on the DA model. Table 2.18 shows

the results. We check the transfer attack performance in two cases: where both

hypothesis and premise are given and where only the hypothesis is given. It can

be seen that even though both the models are architecturally very different, the

triggers transfer remarkably well for both cases. For instance, for the entailment

class, the original and transfer attack accuracy drops are comparable. It is also

noteworthy that our results are equivalent to (Wallace et al., 2019) even for transfer

attacks.

2.2.5.3 Paraphrase Identification

For paraphrase identification, we use the Microsoft Research Paraphrase Corpus

(MRPC) (Dolan and Brockett, 2005). Paraphrase identification is the task of iden-

tifying whether two sentences are semantically equivalent. We use the ALBERT

model (Lan et al., 2020) for the task. It reports an accuracy of 89.9% over this.

Class Impressions: Similar to natural language inference, here, the models re-

quire two input sentences. The task of the model is to identify whether the two
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sentences are semantically the same. The class impressions generated on the AL-

BERT model are given in Table 2.19. We find that similar to the SNLI corpus, the

MRPC class impressions are not readily interpretable. For specific examples like

the first example in the table, we find that sometimes words related to one topic

occur as class impressions. Words like ‘nintendo’ and ’daredevil’ in sentence one

and ‘multiplayer’ and ‘anthem’ often occur in the context of multiplayer digital

games. We should have got similar class impressions in an ideal scenario for sen-

tences 1 and 2 for actual paraphrases. However, we find that the model considers

even those sentence pairs (example 2) as paraphrases that have zero vocabulary

or topic overlap. This indicates that the model is performing a similarity match

in the high dimensional data manifold. We do some analysis for this in Sec. 2.2.6.

We leave the further investigation of this for future work.

UAT: Table 2.20 notes the performance of 3 word data-free adversarial trig-

gers generated using MINIMAL. As can be seen, the mined artefacts reduce the

accuracy for both classes by more than 70%.

Model
f(x)

the the the

Update Sequence
according to Eq.4

∇eadv_iL

soar amaze enthrall thrill

Class Impressions Batch

rich write warm is

calm well post war

0.01

0.07

0.02

P(neg)

me

half sorry

poor ill dismal

the the the
Trigger Sequence

wow stun enthrall polite

Class Impressions Batch

lean write amaze war

just robust thrill fit

Model
f(x)

0.21

0.57

0.32

P(neg)

Update Sequence
according to Eq.4 ∇eadv_iL

captivates captivates raucously Class Impressions Batch Model
f(x)

0.91

0.99

0.95

P(neg)

ill

poor dismal

Final Trigger Sequence

Figure 2.17: Iterative Universal Trigger Generation (UTG) Algorithm.
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2.2.6 Analyzing the Class Impressions

We futher analyze class impressions and their relationship with universal adver-

sarial triggers. Specifically, we try to answer these questions: which words get

selected as class impressions, why are we able to find universal adversarial trig-

gers from a batch of class impressions and no train data distribution is required?

We also try to relate it to the observation made by (Gururangan et al., 2018;

Poliak et al., 2018), which ranked the dataset artefact words by calculating their

pointwise-mutual information (PMI) values for each class. We further show that

the trigger words align very well with dataset artefacts.

Type Direction Trigger Acc.
Before

Acc.
After

Data-free P → N insisting sacrificing either 95 45
Data-free N → P waistband interests stomped 80.9 61.6

Table 2.20: Accuracy drop for the ALBERT paraphrase identification model after
prepending 3-word adversarial triggers generated using MINIMAL.
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Figure 2.18: Mean Entropy of class impression words and 350 words randomly
selected from the SST, SNLI, and MRPC dataset vocabularies.

Class Impression Words: For analyzing why certain words are selected

as representatives of a particular class, we find the discriminative power of each

word by calculating its entropy. Concretely, we calculate entropy of the random

Stanford Sentiment Treebank
Positive % Negative %
beautifully 99.97 dull 99.99
wonderful 99.95 worst 99.99
enjoyable 99.94 suffers 99.98
engrossing 99.94 stupid 99.98
charming 99.89 unfunny 99.97

Impression Average 73.89 Impression Average 77.97

Table 2.21: PMI percentiles for sample class impression words and their average
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Microsoft Research Paraphrase Corpus
Paraphrase % Non-Paraphrase %

experts 99.89 biological 99.91
such 99.84 important 99.39
only 99.67 drug 99.92
due 99.65 case 98.91
said 99.57 among 98.73

Impression Average 77.23 Impression Average 81.89

Table 2.22: PMI percentiles for sample class impression words and their average

Stanford Natural language Inference
Contradiction % Entailment % Neutral %
naked 99.99 human 99.91 about 99.73
sleeping 99.97 athletic 99.73 treasure 99.06
tv 99.96 martial 99.71 headed 99.05
asleep 99.96 clothes 99.53 school 98.87
eats 99.93 aquatic 99.38 league 98.83
Average 67.89 Average 70.89 Average 68.97

Table 2.23: PMI percentiles for sample class impression words and their average

Ground Truth→Attacked Target Trigger ESIM

Entailment→Neutral
Accuracy:88%

beatboxing
insects

reclining

77
68
83

Entailment→Contradiction
Accuracy:79%

qualities
coexist
stressful

70
71
70

Neutral→Contradiction
Accuracy: 79%

disoriented
arousing

championship

69
67
65

Neutral→Entailment
Accuracy: 91%

championship
semifinals

aunts

0.1
0.9
0.5

Contradiction→Entailment
Accuracy: 91%

ballet
nap

olives

5
2
9

Contradiction→Neutral
Accuracy: 88%

nap
hubble
snakes

14
21
9

Table 2.24: We prepend a single word trigger to SNLI hypotheses. We take the
first word from all ground truth class impressions and evaluate them
on class impressions of the target class.
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Figure 2.19: t-SNE plots for SST, SNLI, and MRPC class impression words. The
words from the different class impressions form distinct clusters based
on their classes for all three datasets. The clusters are shown in
different colors based on their classes.

variable Y |X where Y denotes a model class and X denotes the word level feature.

Formally, we compute:

H(Y |X) = −
K∑
k=1

p(Y = k|X) log2 p(Y = k|X) (2.7)

for the class impression words and we compare them with randomly chosen words

from the model vocabulary. Fig. 2.18 shows the results for SST, SNLI, and MRPC

datasets. Interestingly, we find that the words which form class impressions are low

entropy features. These words are much more discriminative than other randomly

sampled words for all three datasets. This is further reinforced by Fig. 2.19 where

we show t-SNE plots for all the datasets . They show that words from different

class impressions form distinct clusters.

Fig. 2.18 shows that CIG algorithm selects low entropy features as representa-

tives of different classes. However, it does not show the class-preference of these

low entropy word-features. We hypothesize that those words become representa-
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Figure 2.20: Attack success rate as a function of trigger length

tives of a particular class with a higher PMIs with respect to that class. In order

to show this, we calculate PMI values of class representatives for each class and

note that class representatives have a higher PMI for their own class than other

classes. Formally, we compute:

PMI(word, class) = log
p(word, class)

p(word, .)p(., class)
(2.8)

We use add-10 smoothing for calculating this. We then group each class impression

word based on its target class and report their PMI percentile. We show the

results in Tables 2.21-2.23. It can be seen that class representatives have very

high PMI percentiles. Previous studies have characterized high PMI words as

dataset artefacts (Gururangan et al., 2018; Poliak et al., 2018). Wallace et al.

(2019) have also shown that universal adversarial triggers have a high overlap

with these dataset artefacts and consequently have high PMI values. Since we

observe that class representatives too have high PMI values, we hypothesize that

they could act as good adversarial triggers.

Following this, we postulate that adding class impression words of one class

to a real example of another class should change the prediction of that example.

For validating this, we conduct an experiment where we take words from class

impressions of class ci and prepend them to real examples of class cj. Table 2.24

shows the results of the experiment over SNLI dataset. As can be seen, the results

are very promising.

We observe that the class which was more adversarially unsecure (Entail-

ment>adv−unsecureContradiction) has better class impression words. These words,
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when added to examples of other classes, produce more successful perturbations.

For e.g., when entailment words are added to contradiction examples, they reduce

the accuracy from 91% to less than 10%. On the other hand, contradiction was

adversarially more secure, and hence there is no appreciable reduction in the ac-

curacy of any other class upon adding the contradiction class impression words‡‡.

This result can potentially help dataset designers design more secure datasets on

which the model-makers can train adversarially robust models.

The above analysis shows that we can get class-impressions and adversarial

triggers from dataset itself by computing entropy and PMI values. Moreover,

our experiments in Sec. 2.2.5 show that one can equivalently mine models to get

class impressions and adversarial triggers. Therefore, we conclude that we can

craft both class impressions and adversarial triggers given either dataset or a well-

trained model (i.e., the one which can model training data distribution well).

Further, the models represent their classes with dataset artefacts. These artefacts

are also responsible for making them adversarially unsecure. The lesser the dataset

artefacts in a class, the lesser is a trained model’s representative capacity for that

class, and the more is the model’s adversarial robustness for that class. We would

like to further develop on these initial results to better dataset design protocols in

future work.

2.2.7 Conclusion and Future Work

This paper presents a novel data-free approach, MINIMAL to mine natural lan-

guage processing models for input-agnostic (universal) adversarial triggers. Our

setting is more natural, which assumes an attacker does not have access to training

data but only the trained model. Therefore, existing data-dependent adversarial

trigger generation techniques are unrealistic in practice. On the other hand, our

method is data-free and achieves comparable performance to data-based adver-

sarial trigger generation methods. We also show that the triggers generated by

our algorithm transfer remarkably well to different models and word embeddings.

We achieve this by developing a combination of model inversion and adversarial
‡‡We find similar results on the MRPC dataset. We did not do these experiments for the SST

dataset since SST class impression words are construct-relevant words and hence are bound to
change sentiment scores while the same is not true for the other two datasets.
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trigger generation attacks. Finally, we show that low entropy word-level features

occur as adversarial triggers and hence one can equivalently mine either a model

or a dataset for these triggers.

We conduct our analysis on word-level triggers and class impressions based

model inversion. While this analysis leads to crucial insights into dataset design

and adversarial trigger crafting techniques, it can be extended to multi-word con-

textual analysis. This will also potentially lead to better dataset design protocols.

We are actively engaged in this line of research. Further, another research focus

can be to generate natural-looking class impressions and, consequently adversarial

triggers.

2.3 Chapter Conclusion

What does an advertisement say that makes people change their beliefs and actions?

With limited works, the computational study of rhetoric of this all-pervasive form

of marketing communication is still in its infancy. In this chapter, based on the

well-developed social psychology and marketing literature, we develop and release

the largest vocabulary of persuasion strategies and labeled dataset. We develop

several models for predicting persuasion strategies for video and image based ads.

Further, we show the performance of these models on several other advertisement-

understanding related tasks, including topic, emotion, and question-answering.
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Chapter 3

Modeling Behavior: A Case For Large Content

and Behavior Models

In the previous chapter, we dealt with the first culture of social science, ex-

planation, and how to enable it at scale by using machine learning techniques

of computer vision and NLP. Marketers make many decisions on a regular basis:

what marketing campaign to launch, who to target, what the message should be,

which channel it should be sent on, when it should be sent, and how frequently.

Extraction of information about advertisements (for example, emotion, persuasion

strategy, topic, and question answering) and correlating them with key perfor-

mance indicators (KPIs) helps decision-makers (in this case, human marketers) to

understand and execute campaigns better. Now, in this chapter, we turn to the

question of how to encode the complete communication pipeline to enable better

and possibly completely automated decision-making.

Thanks to the digitization of various aspects of life, humanity has been col-

lecting a lot of data over the last two decades. For example, let’s take the case of

email marketing, one of the first marketing tools leveraging Internet technology.

Say a Walmart marketer sends a Black Friday offer about a price drop on Apple

devices to John, a 27-year-old male grad student living in Buffalo. The email

was received at 09:57 AM and opened at 02:00 PM. Upon opening the email,

email content consisting of a carousel of four images and three lines is dynami-

cally fetched from the backend. John takes 5 seconds to scan the email quickly,

scrolling halfway through, before deciding to click on a photo. During this single

macro-transaction, a series of micro-transactions are recorded and a host of ma-

chine learning and software systems are required to function together to make a

sequence of decisions.

Amongst all the recorded transactions and algorithms, let’s discuss the most

prominent ones that are important for our use case. Much before sending the

email, depending on business needs, the marketer decides to launch a particular



campaign. The business need, for example, in this case, could be precipitated

by an upcoming event or festival (Black Friday) or a rising inventory of Apple

products. The next step is the creative process, where the marketer designs the

email pods consisting of text and images by herself or with a team of creatives.

The marketer has to decide the target segments (of which John will be a part).

Next, an algorithm has to decide when to send the email and the subject line.

Post this, a series of software technologies helps to send the email to the right

people on time. When John decides to open the email, an event gets recorded

in the backend recording (customer ID, transaction ID, email ID, time of

opening the email, device, email client, [other metadata]). A person-

alization system then dynamically selects the email content and sends it to John’s

device. Those get recorded with the transaction ID. Scrolling on the email also

generates transactions recording which images and text were sent to John’s de-

vice. Further, when John decides to click on one link, another transaction gets

recorded of the type (transaction ID, customer ID, link, time of click,

email client, device, [other metadata]). On an abstract level, all of these

transactions can be represented by the seven factors of communication: (communicator,

message, time of message, channel, receiver, time of effect, effect).

If this email were sent to a million subscribers, one email message would re-

sult in several hundred thousand transactions getting recorded (assuming single

digit click through rate, which is typical of most campaigns). These transactions

capture behavior data of the subscribers in response to a single email sent by the

communicator, Walmart. This example illustrates the size and nature of behav-

ioral data that gets captured. Notice that for a message, it is always the case that

there is one sender and multiple receivers (an invariance noticed as early as 1950s

(Meier, 1959)). Therefore, the scale of behavioral transactions generated is several

orders higher than the number of unique pieces of content.

Given the magnitude of behavioral data collected, the natural question is can

all that data be used to answer questions related to human behavior prediction, ex-

planation, and optimization. Therefore, the research questions that we investigate

in this chapter follow this natural line of inquiry:
1. How can behavior data help? Can behavior data help us to achieve the

following goals:
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(a) Behavior Prediction
(b) Behavior Explanation
(c) Behavior Optimization?

2. How should we encode behavior data?

3. What kind of behavior can help?
(a) How can implicit (like eye movements) and explicit (like clicks, likes,

and views) behaviors help?
(b) Can synthetically generated behavior data help?

To solve the behavior problems listed before, we can take inspiration from

how the problem of learning natural language is being solved in the domain of

large language models (LLMs). Raffel et al. (Raffel et al., 2020), in their seminal

work on T5, mention that the basic idea underlying large language models is to

treat every text processing problem as a “text-to-text” problem, i.e., taking the

text as input and producing new text as output. This framework allows for a

direct application of the same model, objective, training procedure, and decoding

process to every task we consider. Further, this allows us to pre-train a model

on a data-rich task like the next-word prediction, which can then be transferred

to downstream tasks. Notably, thanks to the Internet, the next-word prediction

task has huge amounts of available data. Consider the Common Crawl project

(https://commoncrawl.org), one common source of data included in most language

models. It produces more than 20TB of text per month sampled from random

web pages across the internet.

T5 and other language models like GPT-3, Pythia (Biderman et al., 2023),

and LLama (Touvron et al., 2023) can solve a wide variety of tasks, including the

ones for which they were not explicitly trained. For instance, language models

trained on the next word prediction task showed generalization capabilities across

a wide variety of tasks like question-answering, summarization, natural language

inference, and translation (Brown et al., 2020). Recently, a series of papers have

shown that this generalized “world understanding” captured in LLMs can be lever-

aged to enable them to “see” (Liu et al., 2023a; Li et al., 2023c,a; Zhu et al., 2023;

Ge et al., 2023; Zhang et al., 2023a; Bhattacharyya et al., 2023). This is a sig-

nificant capability enhancement since a model trained in language only settings

can be made to reason about images and videos. These papers follow the same
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Figure 3.1: Communication process can be defined by seven factors: Communica-
tor, Message, Time of message, Channel, Receiver, Time of effect, and
Effect. Any message is created to serve an end goal. For marketers,
the end goal is to bring in the desired receiver effect (behavior) (like
clicks, purchases, likes, and customer retention). The figure presents
the key elements in the communication pipeline - the marketer, mes-
sage, channel, receivers, and finally, the receiver effect.

transfer learning approach advocated by T5, where they convert visual informa-

tion to language space to leverage the “text-to-text” framework. They show that

it is possible to teach a large language model, the new modality of vision, without

needing to pre-train the model from scratch. Rather, using only a few million

tokens, it is possible to scale LLMs’ abilities to vision as well. Following this chain

of thought, it could be possible to solve the effectiveness problem by posing it as

a “text-to-text” problem. This is one of the paradigms we explore in this work.

We show behavior generalization using several different types of behaviors.

Another possible way to integrate behavior with text is an encoder approach,

which we will detail next. While behavior is a downstream effect of content,

behavior contains signals about the content sent to the receiver and can help

improve content-understanding and natural language processing. For instance,

integration of human gaze data into neural network architectures has been explored

for a range of computer vision tasks such as image captioning, visual question

answering, and tagging (Karessli et al., 2017; Yu et al., 2017; He et al., 2019; Boyd

et al., 2022). In language processing, tracking a reader’s eye movements provides

information about the cognitive processes of text comprehension (Rayner et al.,

2006; Just and Carpenter, 1980). Hence, recent research has utilized features
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gleaned from readers’ eye movement to improve the performance of complex NLP

tasks such as sentiment analysis (Long et al., 2017; Mishra et al., 2016c), sarcasm

detection (Mishra et al., 2016b), part-of-speech tagging (Barrett et al., 2016b),

NER (Hollenstein and Zhang, 2019a), and text difficulty (Reich et al., 2022).

While these studies show promise that behavior can be used to extract information

about content, these are done in relatively small-scale lab settings needing real-

time behavior to infer about content. Given these limitations, these approaches

are not possible to scale. Scale helped LLMs to learn language. We therefore

explore the paradigm of synthetic behavior generated over content and then scale

it over to fine-tune a large language model to understand the possibilities of this

paradigm better. We cover both the approaches next.

A notable advantage of both “text-to-text” and encoder paradigms is their

inherent ability to handle missing modalities. Despite LLMs being trained on

trillions of tokens, they exclude image pixels yet can reason about visual content

through text conversion (Bhattacharyya et al., 2023) or via image encoders that

map visual information to LLM-compatible representations. As demonstrated by

Li et al. (2023b); Liu et al. (2023a), teaching vision capabilities requires only a few

million image-text pairs. Similarly for behavior data, we demonstrate two effective

approaches: (1) converting behavioral signals directly to text (Sec 3.2.1), or (2)

employing a behavior encoder that transforms behavioral data into dense represen-

tations compatible with LLMs (Sec 4.1.1). Importantly, these methods function

robustly with incomplete datasets through implicit data imputation—neither ap-

proach requires simultaneous presence of all modalities (content, behavior, sender,

receiver, time, channel) during training. This partial supervision framework al-

lows models to learn cross-modal relationships even when faced with missing or

sparse behavioral signals.

3.1 Introduction

Shannon and Weaver (1949), in their seminal paper on communication, includes

all of the procedures by which one mind may affect another. This includes all

forms of expression, such as words, gestures, speech, pictures, and musical sounds.
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BehaviorText Video Image

I have two ad variants A and B, which one will the user like?
Today is Jan 1 2023, how many people in Texas will buy this shoe

by Jul 1 2023?

What is the color of the wall behind the man?

What does the narrator say when Emily gets into the car?

If my target segment is new parents, how can I modify my
message such that I get a click through rate of 2.5%?

If 100k people viewed this food ad, why did only 500 people
click on it?

Behavior
Simulation

Content
Understanding

Content
Simulation

Behavior
Understanding

Variant A

224k

White

Make the baby face the camera
rather than her mother

The ad sells cheese burger but gets shown
during morning time. People usually

prefer healthier options during morning.

Large 
Content-Behavior

Model (LCBM)

Verbalized Content
and Behavior

Emily was elated to see her
grandma after a long time

Figure 3.2: Encoding and predicting content (images, videos, and text) and behav-
ior in the language space. Large Content Behavior Models (LCBMs),
once trained, can enable a host of different applications, including be-
havior simulation, content understanding, content-behavior optimiza-
tion, and content-behavior understanding.

(a) (b) (c) (d)

Figure 3.3: Comparison of GPT-3.5, GPT-4, Vicuna-13B, and LCBM-13B on:
(a) Behavior Simulation accuracy on two types of behaviors: replay
value prediction and likes/views prediction. The task is, given the
video content and channel information, to predict replay values cor-
responding to each scene and the ratio of likes to views. (b) Content
simulation and behavior understanding tasks. The task for content
simulation is, given the channel information and scene-level behavior,
to predict the scene content. Given information on the video platform
and the video content, the task of behavior understanding is to predict
and explain the sentiments of the viewers and the commenters. Six
evaluators scored the models’ explanations between 0-5 to get the pre-
dicted sentiment and explanation scores by comparing the ratings and
reasons with the user comments. The annotators did not know which
model gave the reasoning. (c) Content understanding tasks. We eval-
uate four tasks: emotion, topic, and persuasion strategy prediction,
and action-and-reason understanding. (d) Behavior Simulation on in-
house Email Marketing Data (R2 score) and Twitter likes (accuracy),
and Content Simulation on Twitter tweet prediction (BLEU/ROUGE
scores). It can be noted that on the behavior simulation, content simu-
lation, and behavior understanding tasks, LCBM performs better than
3-shot GPT-3.5 and 10-shot GPT-4 (covering a larger area. On the
content understanding tasks, while LCBM outperforms similar-sized
Vicuna models, GPT-3.5 performs better. However, we also note that
GPT-3.5 and GPT-4 are at least 12 times larger than LCBM-13B.
Further, we show the behavior domain adaptation results in Table 3.9,
3.3, 3.4.
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They mentioned that the broad problem of communication can be studied at three

levels: technical, semantic, and effectiveness.

Level A: Technical. How accurately can the symbols of communication be

transmitted?

Level B: Semantic. How precisely do the transmitted symbols convey the

desired meaning?

Level C: Effectiveness. How well does the received meaning induce the

desired conduct in the receiver?

These three levels build on top of each other. Thus, solving the problem at

Level C necessarily requires solving the corresponding problems at Levels A and

B.

Since the publication of this seminal paper, the tremendous growth in the field

of telecommunications, particularly the advent of the Internet and mobile devices,

has led to affordable, wide-scale solutions for Level A. With the recent advances

in large language models (LLMs) such as BERT (Devlin et al., 2019), GPT-3 and

4 (Brown et al., 2020; OpenAI, 2023), T5 (Raffel et al., 2020), and many more,

we have witnessed a significant improvement in the performance of various Nat-

ural Language Processing (NLP) tasks. LLMs in zero- or few-shot settings can

easily handle tasks such as question answering, summarization, translation, and

many more. This has helped us progress towards solving Level B to a large extent.

However, the Level C problem of effectiveness remains largely unsolved. Effective-

ness refers to designing messages that can fulfill the communicators’ underlying

objectives, such as explaining complex concepts to the receivers and informing the

receivers’ choices (e.g., when making purchase decisions).

How do we solve the effectiveness problem while retaining the other

two levels? To solve the effectiveness problem, we can take inspiration from how

the semantic problem is being solved. Raffel et al. (2020), in their seminal work on

T5, mention that the basic idea underlying large language models is to treat every

text processing problem as a “text-to-text” problem, i.e., taking the text as input

and producing new text as output. This framework allows for a direct application

of the same model, objective, training procedure, and decoding process to every
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Youtube{ }
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General Youtube
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likes: 15k
views: 60M

scene replays:
[73,85,99,...,24]{ }

description: a sunny
football ground
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asr: even after hours of
practice,

{ }

Figure 3.4: Five factors of communication: Communicator, Message, Channel,
Receiver, and Effect.

task we consider. Further, this allows us to pre-train a model on a data-rich task

like the next-word prediction, which can then be transferred to downstream tasks.

Notably, thanks to the Internet, the next-word prediction task has huge amounts of

available data. Consider the Common Crawl project (https://commoncrawl.org),

one common source of data included in most language models. It produces more

than 20TB of text per month sampled from random web pages across the internet.

T5 and other language models like GPT-3, Pythia (Biderman et al., 2023),

and Llama (Touvron et al., 2023) can solve a wide variety of tasks, including the

ones for which they were not explicitly trained. For instance, language models

trained on the next word prediction task showed generalization capabilities across

a wide variety of tasks like question-answering, summarization, natural language

inference, and translation (Brown et al., 2020). Recently, a series of papers have

shown that this generalized “world understanding” captured in LLMs can be lever-

aged to enable them to “see” (Liu et al., 2023a; Li et al., 2023c,a; Zhu et al., 2023;

Ge et al., 2023; Zhang et al., 2023a; Bhattacharyya et al., 2023). This is a sig-

nificant capability enhancement since a model trained in language only settings

can be made to reason about images and videos. These papers follow the same

transfer learning approach advocated by T5, where they convert visual informa-

tion to language space to leverage the “text-to-text” framework. They show that

it is possible to teach a large language model, the new modality of vision, without

needing to pre-train the model from scratch. Rather, using only a few million

tokens, it is possible to scale LLMs’ abilities to vision as well. Following this chain

of thought, it could be possible to solve the effectiveness problem by posing it as

a “text-to-text” problem. This is the paradigm we explore in this work.

How can we pose the effectiveness problem as a text-to-text prob-
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lem? The problem of effect is to know what the receiver does after receiving the

message (Shannon and Weaver, 1949). In general, for a piece of content, other

than the content itself, we often have information about who consumes the content

and what his action is on consuming the content. The latter is the effect described

in Shannon’s three levels of communication. For instance, an email, as a message

from the communicator to the receiver, elicits certain actions from the receiver

like link-clicks, replies, and read-time. While LLMs are trained on trillions of

tokens of content, the training does not include the receiver effect. For instance,

Enron Email (Klimt and Yang, 2004) is a popular corpus that is included in the

training of LLMs like Pythia (Biderman et al., 2023). It contains 600K email con-

tent sourced from the Enron corporation, which LLMs use to learn how to write

emails. However, it does not contain data about the receivers’ activities, such as

whether they opened the email, how long they kept it open (read-time), and what

their reply was. Similarly, while major text corpora include a large number of

public blogs and user forums to train LLMs like CommonCrawl, they are stripped

of receiver behavior on forum messages, such as the number of likes, shares, and

replies, before including them in LLM training (for instance, see (Biderman et al.,

2022; Penedo et al., 2023)). To pose the effectiveness problem as a text-to-text

problem, we can include these behavior tokens in the text along with content to-

kens and train the LLM to model both of those in the same space. This might

help the LLM simulate the receiver effect, optimize for it, and reason about it.

In this paper, we show initial experiments to integrate behavior as a new

modality to increase the scope of multimodal LLMs from only content to both

content and behavior. We call this new type of model a Large Content Behav-

ior Model (LCBM). This class of models shows promise in enabling the LLMs to

not only reason about content but also reason about and predict human behavior

over that content. Further, LCBMs have the potential for behavior domain adap-

tation where models trained on one type of behavior can generalize on another

behavior type (Fig. 3.3). Behavior simulation can enable many real-world applica-

tions, such as content recommendation, customer journey optimization, and A/B

testing. To build LCBM, we introduce behavior instruction tuning (§3.2.4), an

attempt to extend the instruction tuning paradigm to behavior space, bringing all

five communication factors (communicator, message, channel, receiver, and effect)
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into the same space (Fig. 3.4). Similar to Brown et al. (2020); Raffel et al. (2020);

Liu et al. (2023a); Ge et al. (2023), we do not design best-in-class predictors for

any of the downstream tasks. Rather, we show a model which shows generaliza-

tion capabilities across a wide variety of content- and behavior-related tasks. To

summarize, our paper makes the following two contributions:

Figure 3.5: A few examples showing LCBM’s ability to understand and explain
human behavior of scene replayability. We compare it against human-
provided explanations of the same.

• Large Content Behavior Model (LCBM). We develop a large multimodal
model that shows capabilities of behavior simulation (given content), content
simulation (given behavior), content understanding, and behavior understand-
ing (Fig. 3.2). Following the text-to-text framework, we connect the Vicuna
LLM (Touvron et al., 2023; Chiang et al., 2023) with an open-set visual en-
coder of EVA-CLIP (Sun et al., 2023) and instruction fine-tune it end-to-end
on behavior instruction data. EVA-CLIP and QFormer (Li et al., 2023a) help
the model to understand visual content in the language space, making it a
Vision Language Model (VLM). During behavior instruction tuning, we teach
the model to predict behavior given content and content given behavior using
various instruction tasks (§3.2.4). This helps us teach behavior modality to the
VLM while grounding it in the natural language space. We use three datasets to
show the performance of LCBM: a dataset consisting of YouTube videos as the
content and the corresponding retention graph, likes, the number of views, and
comment sentiment as receiver behavior; a dataset consisting of Twitter posts
(text, images, and videos) and corresponding human behavior (like counts) ex-
tracted from 168 million tweets across 10135 enterprise Twitter accounts from
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Video Title: Robber hangs
from the 23rd-floor window to
escape the police in China
Posted by: South China
Morning Post
Link: youtu.be/P7iDWZiT3Kg

Comments from Video:
(not shown to LLMs/LCBM)

Commenter: I feel bad for the dude. Nobody in
the right mind robs a local shop.. To then hang
out a window. I wonder what he is going through.

Commenter: Kinda feel sorry for him when he
cried, he must have been in a bad situation to
do what he did but it does not justify his actions.

Commenter: Aw, i felt his desperation.
sorry young man but you did wrong. :(

Question: Would the average sentiment of the comments of
the audience be positive, neutral, or negative? Explain why.

LCBM: The average sentiment of the comments of the audience watching
the video would be negative. This is because the video shows a man
jumping out of a high-rise building to escape the police. The audience is
likely to feel sympathy and sadness towards the man's situation.

Video Title: The new Porsche
718 Spyder. Perfectly
irrational.
Posted by: Porsche
Link: youtu.be/573YaSAP5H0

Comments from Video:
(not shown to LLMs/LCBM)

Commenter: Dream car. Mid engine, natural
aspiration, b6, rwd, manual, lightweight, open top

Commenter: All the makings of a epic sports car 👌

Commenter: This car is perfect. I’m in
love. New dream car, no questions asked!

Question: Given the video, would the average audience
sentiment be positive, neutral, or negative? Explain why.

LCBM: Positive average sentiment of the audience. The video features a
luxury car driving along a scenic coastal road, which is would evoke a
sense of awe and admiration in the viewers. Additionally, the Porsche 718
in the video is an iconic sports car that is widely recognized and respected
in the automotive community, contributing to the positive sentiment.

Commenter: I add my vote and wishes to yours ...
a great car I’d love to own and pilot

Vicuna: The audience would likely have a mix of positive and negative
sentiment towards the video. Viewers may feel sympathetic towards the
person trying to escape and praise their bravery.

GPT-3.5: The video depicts a dangerous and potentially life-threatening
situation, which may cause some viewers to feel uneasy or uncomfortable.
However, others may find the events exciting or thrilling to watch. 

Vicuna: The average sentiment of the comments would be positive. The
video showcases a beautiful scenic drive through the mountains, which is
likely to evoke a sense of awe and enjoyment in the viewers. Additionally,
the presence of a luxury car in the video may also contribute to a positive
sentiment, as it may be seen as a symbol of success and wealth.

GPT-3.5: The sentiment of the audience watching the video is positive
because the video showcases a new sports car, which is exciting and
desirable to car enthusiasts.

Figure 3.6: A few examples showing LCBM’s ability to understand and explain
human behavior of audience sentiment. We also compare it against
other models like Vicuna and GPT-3.5.
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2007 to 2023 (Khurana et al., 2024); and an internal dataset of in-house Market-
ing Emails‖ (content) and the click-through rate corresponding to each segment
they were sent to (behavior). We observe that teaching the LCBM behavior
and content simulation improves its capabilities on them (expected), but the
model also shows signs of domain-adaptation in behavior modality (few-shot
capability, unexpected) (Tables 3.9,3.3,3.4) and improvements in behavior un-
derstanding (Figs. 3.6,3.5,§3.3) (zero-shot capability, unexpected) (Brown et al.,
2020). See Fig. 3.3 for a radar plot of all the capabilities and comparisons of
performances across LCBM and state-of-the-art LLMs: GPT-3.5 and GPT-4.

• Dataset and Test Benchmark. To spur research on the topic of large con-
tent and behavior models, we release our generated behavior instruction fine-
tuning data from over 40,000 public-domain YouTube videos and 168 million
Twitter posts. The data contains: 1) YouTube video links, automatically ex-
tracted key scenes, scene verbalizations, replay graph data, video views, likes,
comments, channel name, and subscriber count at the time of collection, and
2) Twitter extracted account names, tweet text, associated media (image and
video) verbalizations (including image captions, keywords, colors, and tones),
tweet timestamps, and like counts (Khurana et al., 2024). We also release a
benchmark to test performance on the joint content behavior space (§3.2.3),
introducing two types of tasks in this space: predictive and descriptive. In the
predictive benchmark, we test the model’s ability to predict behavior given the
content and predict content given the behavior. In the descriptive benchmark,
we validate its explanation of human behavior by comparing it with ground-
truth annotations we obtain from human annotators that try to explain human
behavior. See Figs. 3.6,3.5 for a few examples.

3.1.1 Related Work

Models of Human Communication: Communication is the situation in which

a source transmits a message to a receiver with conscious intent to affect the latter’s

behaviors (Osgood et al., 1957; Miller, 1966). Thus, in the most general terms,

communication implies a sender, a channel, a message, a receiver, a relationship

between sender and receiver, an effect, a context in which communication occurs

and a range of things to which ’messages’ refer (McQuail and Windahl, 2015;

Lasswell, 1948). As per this, all of the content produced by humanity is essentially

communication from a sender to a receiver over some channel and with some effect.

Despite much research on communication in social sciences since the 1900s, there

has been little adoption of it in machine learning modeling. A prime artefact

of this is that the biggest models in machine learning (LLMs) are trained only

on content (messages) and ignore other factors in communication (the intended
‖We obtain in-house Marketing Emails dataset by collaborating with the in-house team.
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receiver, channel, and behavior) even when they are available.

Prior Efforts To Model Behavior: While there has been much research

in ML to model human behavior, it has been disconnected from language and,

sometimes, real-world data. For instance, Agent-based modeling (ABMs), a pop-

ular paradigm in Reinforcement Learning, has been employed to model behavior

(Bankes, 2002; Romero et al., 2023; Park et al., 2023). Nevertheless, ABMs tend

to view humans as rational economic agents who communicate primarily through

their actions, neglecting the significance of content in communication. In ABMs,

agents strive to maximize their rewards, whereas communication does not always

aim to optimize specific, well-defined reward signals. Moreover, the scarcity of

large repositories containing extensive records of human actions poses a challenge

when training ABMs to learn human behavior. Consequently, existing large mod-

els trained on human behavior, such as the ABMs and decision transformer and

its variants, often rely on simulated data, such as game environments, rather than

real human behavior (Chen et al., 2021). This reliance on artificially generated

data introduces biases inherent to the creators of the training data, making it dif-

ficult to capture authentic human behavior. However, recent advancements have

demonstrated the potential of large models trained on real-world tokens encom-

passing various modalities, like images, videos, audio, and text, as the basis for

diverse tasks (Ge et al., 2023; Li et al., 2023a). Notably, LLMs, as exemplars of

foundation models, have exhibited impressive performance across a range of tasks,

including those they were not explicitly trained for, such as emotion recognition,

named entity recognition, and complex tasks like table understanding (Ye et al.,

2023; Bhattacharyya et al., 2023).

Further, there has also been much work in modeling behavior using conven-

tional modeling techniques, such as regression, bagging and boosting (Mazloom

et al., 2016; Villarroel Ordenes et al., 2019), neural networks (Ding et al., 2019;

Wang et al., 2018b; Khosla et al., 2014), and transformers (Wu and Krahenbuhl,

2021; Xiao et al., 2022). While these models can certainly model behavior, LLMs

show generalization powers which extend to capabilities much beyond just behav-

ior simulation. For instance, once trained on behavior tokens, other than behavior

simulation, LLMs can now generate behavior optimized content (Table 3.5), ex-

plain behavior (Table 3.6), and domain-adapt to other behaviors (Table 3.9), none
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of which are shown by other models. The other concurrent works which model be-

havior using LLMs (Kang et al., 2023) model just behavior (for example, by CTR

prediction) by attaching classification or regression heads to LLMs and thereby

lose out on the text-to-text paradigm where LLMs show their best performance

and generalization capabilities. In addition, similar to non LLM paradigm, this

method loses out on other capabilities like generating behavior optimized content

and explaining behavior.

3.2 Setup

In this section, we introduce our approach to model content and behavior together

as a text-to-text problem. Since most publicly available corpora strip off receiver

behavior from content, we first introduce our dataset, “The Content Behavior

Corpus (CBC)”, a dataset consisting of content and the corresponding receiver

behavior. Next, we introduce our methodology to convert the content and be-

havior into text and our approach to model it using an LLM. Then, we cover the

tasks through which we test various capabilities of LCBM (Fig. 3.2): content-

understanding, behavior understanding, content simulation, behavior simulation,

and behavior domain adaptation.

3.2.1 The Content Behavior Corpus (CBC)

The availability of large-scale unlabeled text data for unsupervised learning has

fueled much of the progress of LLMs. In this paper, we are interested in mod-

eling content and the corresponding receiver behavior in the same space. While

available datasets contain trillions of content tokens (text, images, audio, and

videos), they unfortunately do not contain the receiver effect. To address this,

we utilize YouTube and Twitter, two large publicly available sources of content-

behavior data, consisting of (a) account name, account description, and number

of subscribers and followers (communicator data) , (b) rich content in the form

of videos, images, creator-provided captions, titles, and descriptions (message),

(c) behavior in the form of likes, views, user comments, and replay graph (receiver

effect). This covers all the five factors of communication (Fig. 3.4), with the
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channel being fixed (as YouTube or Twitter) and receivers being average channel

followers and viewers of the communicator. Since content data is multimodal in

the form of a combination of images, videos, and text, and behavior data is in the

form of numbers, to model it using a text-to-text paradigm, we verbalize both of

them following the methodology we detail next.
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Figure 3.7: Encoding and predicting content (images, videos, and text) and behavior in the language space. Strategy to behavior instruction
fine-tune (BFT) LLMs to create LCBMs. We capture visual concepts through the visual encoder (EVA-CLIP), and world knowledge
is through an LLM (Llama). To leverage the rich knowledge of LLMs, we use GMHRA and QFormer to convert visual tokens of
ViT to language tokens that Llama can understand. Further, we find that verbalizing the visual stimulus helps Llama to gather
information more explicitly than what is provided by ViT+QFormer. We fine-tune the combined model end-to-end to predict
1) behavior given content and 2) content given behavior. Snowflake and fire symbols denote the frozen and unfrozen parts of the
architecture.
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Verbalization: For the video V , YouTube provides us with 100 average viewer

retention values ri for i ∈ [0..100), corresponding to the entire video. The sam-

pling rate of 100 is constant and independent of video length (T ). Replay value ri
corresponds to video frames between the timestamps (T/100× i, T/100× (i+1)),

which denotes how often these frames were replayed compared to the most re-

played frames. The metric has a value between 0 and 1 that identifies the video’s

relative retention performance at a given point in the video. To accommodate

longer video lengths, we merge replay values until T/100× (i+ j)− T/100× i >

1 second with j ∈ {i+ 1, 100}. We choose the replay value for this merged group

of scenes as max(ri, ..., rj). Using this logic, we get replay values Ri for i ∈ [0..m],

where m = ⌊100/(⌈100/T ⌉)⌋. Next, we sample two frames randomly correspond-

ing to each i ∈ [0..m]. We caption the frames using BLIP (Li et al., 2023a). We

also obtain the automatic speech recognition for the speech for the video between

the timestamps corresponding to replay value Ri using Whisper (Radford et al.,

2023). The ASR and BLIP captions are content for scenes, and replay values are

the behavior corresponding to them. We include the scene content and behavior

in the video verbalization (Listing 3.1) with the sampling for both scene content

and behavior as described above.

We also include video content by encoding video frames through EVA-CLIP

(Sun et al., 2023) (explained in §3.2.2). Other than video embeddings, we include

the video title and description as part of the video content. Corresponding to

the overall video content, we verbalize overall video behavior metrics like video

views and the ratio of likes and views. Finally, we append it with communica-

tor information on the video channel and the subscriber count. The Listing 3.1

presents the overall verbalization for video and frame level content and behavior.

The verbalization for Twitter posts is similar and is given in Listing 3.7.

Listing 3.1: Verbalization pattern for inputting content and behavior in the same

space
Input: <video> ..[Video Tokens] .. </video>

The video has the following scenes:

Scene 1: {ASR: Welcome to a quick tutorial, OCR: Adobe Premiere Pro, Captions: A desktop interface,

Replays: 60},

Scene 2: {ASR: on using Premiere Pro to edit, Captions: A computer interface, with an image of a white horse.

Objects − Horse, Grass, Fence., Replays: 53},

...

It was posted on Adobe's YouTube channel with the title 'Using Premiere Pro like a Pro' on Aug 15 2022.
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Adobe's YouTube channel has 100k subscribers. This video was viewed by 346 thousand people and liked

(as a percentage of likes/views) by 2.3% people.

3.2.2 Model

To understand both visual and textual contents, we follow a similar approach as

was taken by recent models like BLIP, Llava, VideoLlama, and others (Liu et al.,

2023a; Ge et al., 2023; Li et al., 2023a; Zhu et al., 2023), we use visual encoders

to encode visual knowledge and an LLM to encode text and world knowledge.

Fig. 3.7 shows our architecture to encode visual content into the language space.

We include video content by encoding video frames through EVA-CLIP (Sun et al.,

2023) and Global Multi-Head Relation Aggregator (GMHRA) from Uniformer (Li

et al., 2021). GMHRA helps aggregate the information better across the time

dimension. The combination of ViT and GMHRA gives us a good representa-

tion of the visual content. Next, to effectively leverage the LLM’s rich language

representations, we use Q-Former from BLIP-2 (Li et al., 2023a) with an extra

linear layer and additional query tokens to convert from visual tokens to language

tokens. Further, similar to Bhattacharyya et al. (2023), we find that while en-

coding visual tokens is powerful, converting visual content to text adds to the

downstream performance. Therefore, we include the BLIP caption for each scene

along with the scene replay graph.

We use the Llama-based Vicuna-13B LLM (Touvron et al., 2023; Chiang et al.,

2023) as our base LLM. Similar to prior works (Liu et al., 2023a; Ge et al., 2023;

Li et al., 2023a; Zhu et al., 2023), we follow a two-stage training paradigm where

in the first stage, we utilize the WebVid (Bain et al., 2021), COCO caption (Chen

et al., 2015), Visual Genome (Krishna et al., 2017a), CC3M (Sharma et al., 2018),

and CC12M (Changpinyo et al., 2021) datasets to align the visual encoder embed-

dings with LLM. In the second stage, we train the model with behavior instruc-

tions prepared by following the approach described in §3.2.4. In summary, LCBM

takes concatenated inputs of visual tokens, scene ASR, caption, scene behavior of

replays, channel information, and video title and behavior metrics of views and

a ratio of likes to views. Based on the instruction, we test LCBM’s abilities on

various tasks we cover in the next paragraphs.
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Computational Requirements: We employed a distributed training setup

using 32 NVIDIA A100 GPUs (80GB each), providing a total of 2.56TB of GPU

memory across the cluster. The distributed training was implemented using Py-

Torch’s DistributedDataParallel (DDP) framework with gradient synchronization

across all GPUs to ensure consistent model updates. We used gradient accu-

mulation with micro-batch sizes of 4 samples per GPU, accumulating gradients

over 8 steps before performing parameter updates, effectively achieving a global

batch size of 1,024 samples. Additionally, we employed gradient checkpointing

to trade computation for memory during backpropagation through the vision en-

coder components. The two-stage training paradigm required approximately 180

hours of total compute time per run. We used adaptive learning rate scheduling

with warmup periods and cosine annealing to ensure stable convergence across

the large parameter space of the 13B model. Data loading and preprocessing were

optimized through asynchronous data pipelines with prefetching, allowing con-

tinuous GPU utilization while handling the multimodal nature of our datasets.

Video frame extraction and encoding were performed on-the-fly during training

to minimize storage requirements, while maintaining training throughput through

parallelized preprocessing workers. This infrastructure enabled us to efficiently

process the behavioral tokens alongside traditional content tokens, making the

behavior instruction fine-tuning paradigm computationally feasible at scale.

Technical Training Pipeline Description: The training pipeline employs

a similar optimization setup as LLaVA (Liu et al., 2023a) using AdamW optimizer

with a 2e-5 learning rate and cosine annealing schedule with 3% warmup ratio.

The system utilizes DeepSpeed ZeRO Stage 2 optimization with CPU offloading

for memory efficiency, enabling distributed training across multiple GPUs. Train-

ing uses micro-batches of 4 samples per device with gradient accumulation disabled

(steps=1), while bfloat16 mixed precision and TensorFloat-32 (TF32) acceleration

optimize computational efficiency. Weight decay is disabled (0.0), but the pipeline

incorporates gradient checkpointing for memory conservation and LoRA (Low-

Rank Adaptation) fine-tuning with 5% dropout for parameter-efficient training.

The custom LLaVATrainer implements sophisticated parameter grouping, apply-

ing different weight decay policies to layer normalization and bias parameters

versus other weights, with optional learning rate multipliers for specific parameter
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groups. Additional regularization comes through quantization support (4-bit/8-

bit with double quantization) and length-grouped sampling that batches samples

of similar sequence lengths to improve training stability and efficiency.
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Model #Params Training Past Future Random All Masked
Window Size

5 7
RMSE Accuracy RMSE Accuracy RMSE Accuracy RMSE Accuracy RMSE Accuracy

LCBM
13B

3-BFT 8.12 55.10 15.05 42.42 8.55 61.41 9.91 55.10 - -
LCBM 5-BFT 11.53 52.06 12.02 53.06 8.13 64.83 9.22 60.26 31.34 17.16
LCBM 7-BFT 16.17 35.61 15.14 44.11 9.02 59.22 10.47 53.84 - -
LCBM 11-BFT 18.25 30.95 15.05 41.44 10.01 55.15 10.49 52.61 - -
GPT-4

>100B† 10-shot-ICL 34.45 20.55 19.51 36.08 22.99 26.99 27.25 17.27 38.52 14.26
GPT-4 2-shot-ICL 35.05 19.34 18.07 39.33 17.42 38.10 21.26 28.05 37.60 13.73
GPT-3.5 175B 3-shot-ICL 34.10 19.06 24.71 27.14 24.52 24.81 26.30 18.74 38.77 13.47
GPT-3.5 2-shot-ICL 33.36 18.02 26.44 25.42 23.35 25.35 24.68 21.24 37.16 13.39
Random - - 34.10 10.00 34.10 10.00 34.10 10.00 34.10 10.00 34.10 10.00

Table 3.1: Behavior Simulation. Mean RMSE and accuracy scores for scene-by-scene predictions of video replay values. Replay values are
the normalized replay scores of each scene as provided by YouTube. The normalized scores are considered to 2 decimal places and
multiplied by hundred to convert the score to an integer score in the range 0-100. RMSE is calculated for each video in the test
set and the mean is calculated for this score and reported. The model is said to classify correctly if the absolute error between
the predicted and ground truth value is less than or equal to 5. The scores are calculated in four regimes: past, future, random,
and all-masked. In the past (future) regimes, first (last) 5-20% scenes are masked; in the random setting, 5-20% scenes are masked
randomly, and in all masked setting, everything is masked. LCBM was behavior-fine-tuned (BFT) with 3,5,7,11 context window
masking strategy, while GPT was compared with an in-context learning (ICL) setting. We note that behavior fine-tuned LCBM,
while being at least 10x smaller than other models, performs the best. Best models are denoted in green and runner-ups in blue .
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3.2.3 Content Behavior Test Benchmark

We test the capabilities of large content-behavior models on predictive and de-

scriptive abilities on content and behavior, as illustrated in Fig: 3.2. We design

the following five tasks to test these capabilities: behavior simulation, content

simulation, content understanding, behavior understanding, and behavior domain

adaptation. We cover each of these tasks next.

1. Behavior Simulation. We test simulation capability on four behaviors across
two datasets: YouTube replay values, the ratio of YouTube likes to views, Twit-
ter likes, and the number of views of the YouTube video. The common task
amongst all of them is to predict the behavior given the content and content
attributes like captions, scene-by-scene descriptions for videos, and sender char-
acteristics like account and subscriber count and date of posting. The behavior
to be predicted is masked and asked as a question to the LLM. Listings 3.6 and
3.7 lists the verbalization pattern for this task. For replay value prediction, we
test the masked behavior in three settings: Masked Past (all replay values of
the first 5-20% scenes are masked), Masked Future (all replay values of last 5-
20% scenes are masked), and Random Masks (random masking of replay values
for 5-20% scenes). Metrics: For replay value prediction (Table 3.1), we use
RMSE and accuracy, where a prediction is considered correct if the absolute
error between predicted and ground truth is ≤ 5. For Twitter like prediction
(Table 3.3), we use classification accuracy in a binary high/low prediction task.
For like/view ratio prediction (Table 3.7), we use RMSE, R² score, and accuracy
(correct if error � 10% of ground truth).

2. Content Simulation. Here, the task is to predict content given receiver be-
havior (Listing 3.5, 3.4). For YouTube, given the video content in terms of
scene-by-scene descriptions with the content of one group of five consecutive
scenes content being masked, behavior values of all scenes, and channel infor-
mation, the task is to choose the masked scene speech from a list of 25 options,
chosen randomly from the entire test set. For YouTube, we chose to model this
task as a discriminative task instead of a generative one since videos are gen-
erally long, and there could be multiple possible contents for a given behavior,
whereas the ground truth is available only for one specific characterization of
the content for a given behavior. For Twitter, we model this task as content
generation. The Listing 3.8 presents the format for this task. Metrics: For
Twitter content simulation (Table 3.4), we use BLEU-1/2/3/4 and ROUGE-L
to evaluate the quality of generated tweet text. For YouTube content simulation
(Table 3.5), due to the open-endedness of videos, we turn content prediction to
a classification task, where the task is to select speech segments out of a given
number of choices; we use accuracy as the performance metric (percentage of
correctly selected speech segments).

3. Behavior Understanding. The goal of this task is to check if the model can
reason about observed or unobserved receiver behavior. For this task, we could
ask the model to explain any behaviors given the content. However, only the
§Note that we cannot compare this model with GPT-3 due to the private nature of data.
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YouTube receiver comments have ground truth available with the video. With-
out ground truth, we found that other behaviors, such as replay values, likes,
and views, are difficult to explain by non-experts. Therefore, we ask the model
to simulate the sentiment of the receivers’ comments and describe its reason-
ing. To evaluate, we asked six annotators to annotate the reasons provided by
the model on a scale of 0-5, with 0 implying the LLMs provided no sentiment
or reasoning and 5 implying perfect reasoning. The annotators were free to
rate the LLMs as they seemed fit. The annotators were asked to review the
video content and the comments to help them evaluate the reasons. We average
the ratings of three annotators to get an average rating for every video. Simi-
larly, to review the sentiment correctness, we asked the annotators to judge the
predicted sentiment rating with respect to user comments. Metrics: We use
sentiment accuracy (percentage of correct sentiment predictions compared to
ground truth) (Table 3.6) and reasoning score (average human-assigned rating
from 0-5).

4. Content Understanding. To check if a model trained on both content and
behavior tokens does not forget its original content understanding capabilities,
we test the content understanding tasks on YouTube videos, following Bhat-
tacharyya et al. (2023). They use the following tasks for video-understanding:
topic, emotion, persuasion, and action-reason classification. For topic, emotion,
and action-reason classification tasks, they use the advertisements dataset by
Hussain et al. (2017), which contains 3,477 video advertisements and the corre-
sponding annotations for emotion and topic tags and action-reason statements
for each video. There are a total of 38 topics and 30 unique emotion tags
per video. Further, we have 5 action-reason statements for each video for the
action-reason generation task. For our experiment, we use the subset of 1,785
public videos. Following Bhattacharyya et al. (2023), for the topic and emotion
classification task, we evaluate our pipeline using top-1 accuracy as the evalu-
ation metric. Further, we evaluate emotion classification on clubbed emotion
labels as well. For action and reason prediction, we evaluate our accuracy on the
action and reason retrieval tasks where 29 random options along with 1 ground
truth are provided to the model to find which one is the ground truth. In the
persuasion strategy classification, we use the 1002 persuasion strategy videos
and corresponding labels released by Bhattacharyya et al. (2023). Given the
video, the model has to predict which persuasion strategy the video conveys.
Persuasion strategy classification could be an important task for evaluating
LCBM since the concept of persuasion in psychology views human communica-
tion as the means to change the receiver’s beliefs and actions (i.e., to persuade)
(Kumar et al., 2023a), and understanding the different strategies present in
communication may help understand human behavior better. Metrics: Fol-
lowing previous works (Bhattacharyya et al., 2023; Kumar et al., 2023a), we
evaluate using top-1 accuracy across all content understanding tasks (topic,
emotion, persuasion strategy, action, and reason).

5. Behavior Domain Adaptation. In the past work, we have observed strong
generalization capabilities from LLMs (OpenAI, 2023; Ouyang et al., 2022;
Raffel et al., 2020). While training on next token prediction, LLMs show gen-
eralization across tasks, including question answering, natural language infer-
ence, and sentiment analysis. Given this, the natural question is, does LCBM,
too, show this kind of generalization, where a model trained on one kind of
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Date Range April 1, 2022 to June 12, 2023
Number of Countries 225
Target Products Top Products used by millions of

users
Customers Segmented on the
basis of

Type of use, user expertise, fre-
quency of use, and others

Table 3.2: Details of the in-house Marketing Email dataset used to evaluate be-
havior generalization capabilities of the LCBM

behavior, can show performance on another behavior? To understand this,
we test the model on a different dataset and task than what it was originally
trained for. We do this over three datasets, LVU (Wu and Krahenbuhl, 2021),
in-house Email Marketing‖, and generalization between Twitter and YouTube
likes.
• LVU Benchmark. Wu and Krahenbuhl (2021) released a benchmark

for long video understanding with over 1000 hours of video. In the bench-
mark, they have two behavior related tasks: ratio of likes to likes+dislikes
and view prediction. YouTube has discontinued the dislike count, there-
fore, our corpus does not contain the dislike count. We use the LVU test
benchmark to check if a model trained on other available behaviors (views,
likes, and replay graphs) is able to predict the like ratio. Metrics: Follow-
ing previous works (Bhattacharyya et al., 2023) (Table 3.9), we use MSE
(Mean Squared Error) for evaluating performance on the LVU benchmark.

• in-house Email Marketing. In this task, we ask the model to predict
the click-through rate for a given target segment of an email, given the
email content, subject, and verbalized descriptions of the images in the
email. We use the emails sent by in-house marketing team to its sub-
scribers. The emails were sent from April 1, 2022 to June 12, 2023 and
covered many of the premiere products. The emails were sent to many
customer segments (as defined by the marketing team) across 225 coun-
tries (Table 3.2). Listing 3.3 lists the verbalization format to verbalize
emails to input to the LCBM. Metrics: We use RMSE and R² score to
evaluate click-through rate prediction performance (Table 3.9).

3.2.4 Behavior Instruction Fine-Tuning (BFT)

To teach an LLM the behavior modality over multimodal content, we convert

both the visual tokens and behavior modality in the text format and instruction

fine-tune the LLM end to end. This follows a two-stage approach: first, we teach

the LLM the visual modality (§3.2.2), and next, we teach the LLM the behavior
‡Brand Separated means that the train and test set don’t have any overlap in terms of

brands, Time Separated means that the test set starts after the last tweet in the train set. BFT
denotes behavior fine-tuning, and ICL stands for in-context learning. The best results over four
runs are reported for all models. Best models are denoted in green and runner-ups in blue .
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Model #Params Training
type Training Time

Separated
Brand

Separated
GPT-3.5 175B ICL Few-shot 58.84 64.19
LCBM 13B BFT Twitter 74.3 97.69

LCBM 13B BFT Twitter and
YouTube data 76.87 92.19

Table 3.3: Behavior Simulation and Behavior Domain Adaptation‡. Two-
way classification accuracies for like prediction on Twitter. Given con-
tent, channel, and time, predict behavior (High, Low). We note that
LCBM trained on Twitter and YouTube performs better than the one
trained only on Twitter, showing signs of performance improvement by
domain adaptation.

Model Training Test BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-l

GPT-3.5 ICL Brand Separated 53.95 42.36 31.84 24.28 15.24
Time Separated 57.69 45.11 33.67 25.52 15.27

LCBM BFT on
Twitter

Brand Separated 62.29 46.59 33.98 25.64 14.44
Time Separated 70 54.4 41.43 32.48 17.38

LCBM BFT on Twitter
+ Youtube

Brand Separated 64.28 48.1 35.17 26.63 14.83
Time Separated 70.23 54.54 41.52 32.54 17.45

Table 3.4: Content Simulation and Behavior Domain Adaptation‡. Given
behavior, channel, time, tweet media caption as prompt, predict con-
tent (tweet text). We note that LCBM trained on Twitter and YouTube
performs better than the one trained only on Twitter, showing signs of
performance improvement by domain adaptation.
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modality. We call the latter “Behavior Instruction Fine-Tuning (BFT)” inspired

by instruction fine-tuning (IFT) and its variants like visual instruction tuning (Liu

et al., 2023a).

We prepare the content-behavior instruction datasets as explained next.

Teaching behavior in the forward direction (predict behavior given content):

In this instruction tuning task, we teach the model to predict behavior given

the message sent by the communicator. Essentially, this teaches the model to

predict behavior in the forward direction (as in Fig. 3.4). Concretely, we include

the following information as part of verbalization - image and video embedding

converted to the text space (using EvaCLiP (Sun et al., 2023)), scene-by-scene

verbalization covering automatic speech recognition, scene captions, video/post

caption and description, receiver behavior covering replay rates, views, and likes,

and communicator information covering account name and follower count. The

verbalisation pattern for this task is the same as given in the Listing 3.6.

Teaching behavior in the reverse direction (predict content given behav-

ior): This task teaches the model to learn about behavior in the reverse direction

(Fig. 3.4). Here, the model learns to simulate content given behavior. The in-

struction for this task is given in Listing 3.4.

Using the prepared content and behavior instruction datasets consisting of

pairs of content and behavior tokens, we treat the content tokens (XC) as input

and behavior tokens (XB, xi ∈ XB) as output of the language model. We then

perform instruction-tuning of the LLM on the prediction tokens, using its original

auto-regressive training objective. Specifically, for a sequence of length L, we

compute the probability of generating target answers (XB) by:

p(XB|XC) =
L∏
i=1

pθ(xi|XC ,XB,<i) (3.1)

For the behavior instruction tuning, we keep the visual encoder weights frozen

and continue to update the pre-trained weights of the LLM in LCBM.
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Model #Params Accuracy
Vicuna 13B 19.30%
LCBM 13B 48.68%
GPT-3.5 175B 34.98%
Random - 4%

Table 3.5: Content Simulation.
In this task, the models
have to choose the speech
segment from a list of 25
options given the video
description, non-masked
scenes. and replay behav-
ior. We see that despite
being similar to masked
language modeling (which
is a content-only task),
LCBM performs better
than both Vicuna and
GPT-3.5. Best models
are denoted in green and
runner-ups in blue .

Model #Params Sentiment Accuracy Reasoning Score
Vicuna 13B 65.66% 2.23
LCBM 13B 72.73% 4.00
GPT-3.5 175B 61.62% 1.67

Table 3.6: Behavior Understanding.
In this task, the models have
to simulate the sentiment of
comments that a video would
get by looking at only the
video. Further, they also have
to explain the reason for such
sentiment. The responses were
annotated by humans on a scale
of 0-5 for the reason, with 0
being no response provided and
5 being the response matches
exactly with the (ground truth)
comments received on the
video. Best models are denoted
in green and runner-ups in
blue .

3.3 Results and Discussion

Here, we discuss the results for the five tasks we discuss in Section 3.2.3, namely,

behavior simulation, content simulation, behavior understanding, content under-

standing, and behavior domain adaptation. We compare the behavior fine-tuned

model discussed in §3.2.4 with state-of-the-art content-only models like GPT-3.5,

GPT-4, and Vicuna-13B. This allows us to compare how much including behavior

tokens in the training of an LLM helps in improving the LLM’s understanding of

behavior and joint content and behavior spaces while retaining its understanding

of the content space.

The results for the five tasks are presented in Tables 3.1,3.7,3.5,3.6,3.8, 3.9,3.3,

and 3.4. We note a few general trends. LCBM, while being 10x smaller than

GPT-3.5 and 4, performs better than them on all behavior-related tasks. Further,

we see that there is no significant difference between 10-shot and 2-shot GPT-4 or

between GPT-3.5 and GPT-4, indicating that unlike other tasks, it is harder to

achieve good performance through in-context-learning on the behavior modality.

It can be observed that often GPT-3.5 and 4 achieve performance comparable to
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(or worse than) random baselines. Interestingly, the performance of GPTs on the

content simulation task is also substantially behind LCBM. The way we formu-

late the content simulation task (Listing 3.5), it can be seen that a substantial

performance could be achieved by strong content knowledge, and behavior brings

in little variance. We still see a substantial performance gap between the two

models. All of this indicates that large models like GPT-3.5 and 4 are not trained

on behavior tokens.

For the content understanding tasks (Table 3.8), predictably GPT-3.5, being

the largest model, achieves the best results. However, we see that BFT helps

the LLM to learn most content understanding tasks better than the base LLM.

LCBM gets better results than both Vicuna and VideoChat. This indicates that

behavior modality might carry additional information about the content, which

might help an LLM understand content better (Khurana et al., 2023; Klerke et al.,

2016a; Plank, 2016a). Next, we see that LCBM also shows signs of domain adap-

tation in the behavior modality. We see that on five tasks: comment sentiment

prediction, comment sentiment reasoning (Table 3.6), email behavior simulation

(Table 3.9), and Twitter behavior (Table 3.3) and content simulation (Table 3.4).

We note that if the LCBM is trained on only email behavior simulation samples,

it underperforms the model trained on both YouTube data and a few samples to

make the model learn email format. Similarly, LCBM trained on both Twitter

and YouTube performs better than the one just trained on Twitter, showing per-

formance improvement by domain adaptation. Finally, Figs. 3.6,3.5 show a few

samples where we query LCBM to explain replay and comment behavior and com-

pare it with human explanations. We see that LCBM while verbose, can explain

behavior well.

3.3.1 Verbalization Listings

Listing 3.2: Verbalization pattern of videos for the behavior understanding task:
Input: <video> .. </video>

The video has the following scenes:

Scene 1: {ASR: Welcome to a quick tutorial, OCR: Adobe Premiere Pro, Captions: A desktop interface,

Replays: 60},

†The exact size of GPT-4 is unknown.
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Model #Params Training type Training RMSE R2 Accuracy
LCBM

13B

BFT Replay values 3-masked 1.31 0.87 15.89
LCBM BFT Replay values 5-masked 1.48 0.82 19.93
LCBM BFT Replay values 7-masked 1.71 0.78 15.20
LCBM BFT Replay values 11-masked 1.55 0.82 13.94
GPT-4

>100B† ICL 10-shot 3.50 -0.01 7.84
GPT-4 ICL 2-shot 3.58 -0.03 5.39
GPT-3.5 175B ICL 3-shot 64.40 -256.96 2.48
GPT-3.5 ICL 2-shot 64.88 -375.83 1.27
Random - - - 4.67 0 3.94

Table 3.7: Behavior Simulation. RMSE, R2, and accuracy scores for like/view
ratio prediction task. To calculate accuracy, the model is said to classify
correctly if the absolute error between the predicted and ground truth
likes/views is less than or equal to 10%. BFT denotes behavior fine-
tuning, and ICL stands for in-context learning. Replay values k-masked
means a model which is trained by masking k consecutive values of the
replay graph while doing BFT. We note that LCBM while being at least
10x smaller than the other models, performs the best. The best results
over four runs are reported for all models. Best models are denoted in
green and runner-ups in blue .

Training Model #Params Topic Emotion Persuasion Action Reason

All labels Clubbed

Random Random - 2.63 3.37 14.3 8.37 3.34 3.34
Zero-shot GPT-3.5 175B 51.6 11.68 79.69 35.02 66.27 59.59

Vicuna 13B 11.75 10.5 68.13 26.59 20.72 21.00
VideoChat
(Li et al., 2023c) 13B 9.07 3.09 5.1 10.28 - -

LCBM 13B 42.17 7.08 58.83 32.83 39.55 27.91

Table 3.8: Content Understanding. Comparison of several models, including
behavior instruction tuned models before and after BFT. We com-
pare the models across topic, emotion, and persuasion strategy detec-
tion tasks as per the framework given by Bhattacharyya et al. (2023).
We see that our model outperforms similarly sized models (Vicuna,
VideoChat) in most tasks. Best models are denoted in green and
runner-ups in blue .
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in-house Email Marketing

LCBM Type Fine-tuned Trained On Tested On RMSE R2

on
YouTube?

Unique
Emails

Unique
Segments

Email-Segment
Pairs

Domain-
Adapted Yes 100 10 1k Different Segment

(emails could
be same)

14.47 0.64
In-

Domain No 600 560k 350k 25.28 0.55

Domain-
Adapted Yes 100 10 1k Different Segments

& Different Emails
27.28 0.54

In-
Domain No 600 560k 350k 29.28 0.5

LVU Benchmark

Training Model Testing MSE

Trained R101-slowfast+NL
(Wu and Krahenbuhl, 2021) Test set 0.386

Trained VideoBERT
(Sun et al., 2019a) Test set 0.32

Trained Qian et al. (2021) Test set 0.353
Trained Xiao et al. (2022) Test set 0.444

Trained Object Transformers
(Wu and Krahenbuhl, 2021) Test set 0.23

Zero-shot LCBM (Ours) Test set 0.14
Zero-shot GPT-3.5 Test set 0.03

Zero-shot Vicuna Complete dataset 0.44
Zero-shot LCBM (Ours) Complete dataset 0.30
Zero-shot GPT-3.5 Complete dataset 0.02

Table 3.9: Behavior Domain Adaptation. We test the generalization capabil-
ity of LCBM on two tasks: (1) Behavior simulation on in-house Email
Marketing Data, (2) Behavior simulation on the LVU benchmark. For
(1), we train two versions of LCBM with the in-house Email Marketing
data: one was trained on YouTube videos and further BFT on a few
email samples (domain-adapted), and the other was BFT on a larger
set of emails, but not including YouTube data (in-domain)§. We re-
port the RMSE and R2 scores for this task. For (2), we compare LCBM
with other state-of-the-art results and GPT-3. In (1), we note that the
domain-adapted LCBM performs better than the in-domain LCBM in
both settings. We posit that YouTube data helps LCBM understand
how a company’s viewers like to hear from it, giving LCBM an edge
over a model trained on a small amount of the same data (600 unique
emails). In (2), LCBM performs better than the existing state-of-the-
art. Surprisingly, GPT-3.5 does better than LCBM on this task. From
both (1) and (2), we gather that a model trained on certain YouTube
behaviors performs better on other behaviors, thus showing promise of
domain-adaptation in the behavior modality. Best models are denoted
in green and runner-ups in blue .
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Scene 2: {ASR: on using Premiere Pro to edit, Captions: A computer interface, with an image of a white horse.

Objects − Horse, Grass, Fence., Replays: 53},

...

It was posted on Adobe's YouTube channel with the title 'Using Premiere Pro like a Pro' on Aug 15 2022.

Adobe's YouTube channel has 100k subscribers. This video was viewed by 346 thousand people and liked

(as a percentage of likes/views) by 2.3% people. Why is the scene 23 one of the most replayed scenes?

Output: The scene shows the transformation of the image after the changes.

Listing 3.3: Verbalization pattern of emails for the behavior domain adapation

task. The email content and CTR is for demonstration purposes only.
Input: Email with Subject: Lock it down before you send it out.

Header: Nobody messes with your PDFs.

Body text: Add password protection, secure encryption, and restricted editing to your PDFs with Adobe

Acrobat Pro DC. Share only what you want and nothing more. A button that says 'Get started'. An

image of a laptop, with window open on it. Image text: ”Protect using password”.

Foreground colors: grey, blue. Background colors: lavender, white. Image Emotions: security, serious. Image

keywords: laptop, protect, password, lock. Aesthetic value: low. Clutter level: medium. The email is

created by a Creative Professional, for the product Adobe Acrobat Pro. It is sent to users in the United

States, in the commercial market. Specifically, it is sent to Power users with the intent of Active Use.

The email was sent 109 times between 25 August, 2022 and 26 August, 2022, and had a click through rate of [

MASK]%.

Output: 0.037%.

Listing 3.4: Verbalization pattern to teach behavior in the reverse direction (pre-

dicting content given behavior):
Input: <video> .. </video> The video has the following scenes: Scene 1: {ASR: [MASK], Replays: 60%},

Scene 2: {ASR: with Premiere, Captions: Woman looking at screen, Replays: 34%},

...

Scene 5: {ASR: has never been, Captions: Colour Pallete, Replays: 47%},

Scene 6: {ASR: been easier, Captions: Colour Pallete, Replays: 54%},

...

It was posted on Adobe's YouTube channel with the title 'Using Premiere Pro like a Pro' on Aug 15 2022. It is

viewed 203k times and liked 1.2%. Adobe's YouTube channel has 100k subscribers. Predict the masked

ASR value for the masked scenes.

Output: Scene 1:{ASR: Welcome to a quick tutorial.}

Listing 3.5: Verbalization pattern of videos for the content simulation task:
Input: <video> .. </video> The video has the following scenes: Scene 1: {ASR: [MASK], Replays: 60%},

Scene 2: {ASR: with Premiere, Captions: Woman looking at screen, Replays: 34%},

...

Scene 5: {ASR: has never been, Captions: Colour Pallete, Replays: 47%},

Scene 6: {ASR: been easier, Captions: Colour Pallete, Replays: 54%},

...

It was posted on Adobe's YouTube channel with the title 'Using Premiere Pro like a Pro' on Aug 15 2022. It is

viewed 203k times and liked 1.2%. Adobe's YouTube channel has 100k subscribers. Predict the masked

ASR value for scene 1. Choose from the given options.
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Option−1: Welcome to a quick tutorial,

Option−2: Samsung Galaxy A20 smartphone,

...

Option−25: regulations. We haven't had.

Listing 3.6: Verbalization pattern of videos for the behavior simulation task:
Input: <video> .. </video> The video has the following scenes:

Scene 1: {ASR: Welcome to a quick tutorial, OCR: Adobe Premiere Pro, Captions: A desktop interface,

Replays: [MASK]},

Scene 2: {ASR: on using Premiere Pro to edit, Captions: A computer interface, with an image of a white horse.

Objects − Horse, Grass, Fence., Replays: [MASK] }, ...

It was posted on Adobe's YouTube channel with the title 'Using Premiere Pro like a Pro' on Aug 15 2022.

Adobe's YouTube channel has 100k subscribers. Can you tell the replay values for scenes 2 to 5. How

many times will this video be viewed and liked as a percentage of likes/views?

Output: Scene 1: {Replay: 60%}, Scene 2: {Replay: 85%}, ..., Views: 2.1 Million, Likes−per−View: 2.5%

Listing 3.7: Verbalization pattern of Twitter posts for the behavior simulation

task:
Input: Given a tweet of pfizer posted by the account PfizerMed on 2023−01−12. Tweet : Announcing a new

ASGCT−Pfizer grant to support independent medical education initiatives on genetic medicines. For

details, click Request for Proposals. <hyperlink>. Apply by January 30, 2022 #raredisease #ASGCT #

GeneTherapy <hyperlink>. Verbalisation of media content: \”caption\”: \”A close−up of a DNA double

helix, showcasing its structure and blue color\”,\”keywords\”: \”DNA, double helix, structure, blue, close

−up, molecular biology, genetics, biology, scientific illustration\”}. Predict whether it will recieve high or

low likes?”,

Output: This tweet has low likes.

Listing 3.8: Verbalization pattern of Twitter posts for the content simulation task:
Input: Generate a tweet given the media verbalization and the likes it got. Tweet is for pfizer to be posted by

the account PfizerMed on 2023−01−12. Verbalisation of media content: \”caption\”: \”A close−up of a

DNA double helix, showcasing its structure and blue color\”,\”keywords\”: \”DNA, double helix,

structure, blue, close−up, molecular biology, genetics, biology, scientific illustration\”}. This tweet has

low likes.”

Output: ”Tweet : Announcing a new ASGCT−Pfizer grant to support independent medical education

initiatives on genetic medicines. For details, click Request for Proposals. <hyperlink>. Apply by January

30, 2022 #raredisease #ASGCT #GeneTherapy <hyperlink>”}

3.3.2 Cross Domain Generalization

A key question for the practical use of Large Content Behavior Models (LCBM)

is whether the improvements seen in advertising contexts can be applied to other

domains like education, healthcare, and entertainment. Our experiments provide
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Figure 3.8: The in-house marketing emails used in the Email dataset look similar
to the ones shown here.
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strong evidence supporting this cross-domain generalization.

Cross-Domain Performance. The LVU benchmark results (Table 3.9)

clearly demonstrate LCBM’s capability, achieving a zero-shot performance with an

MSE of 0.14 on videos from documentaries, lectures, sports, and entertainment—

none of which are related to advertising. Additionally, LCBM adapts well to vari-

ous content types and behavioral patterns, such as temporal engagement dynam-

ics and content complexity preferences, facilitating cross-domain transfer. Our do-

main adaptation experiments reveal that LCBM, when trained on diverse YouTube

content, performs better on email marketing tasks (R² = 0.64) compared to mod-

els trained solely on email data (R² = 0.55), indicating effective bidirectional

cross-domain transfer.

Diverse Content Coverage. Our Content Behavior Corpus (CBC) dataset,

comprising over 40,000 videos, includes educational tutorials, health and wellness

content, entertainment, technology reviews, and general informational content.

This diversity shows that LCBM can learn behavioral patterns beyond just per-

suasive or commercial content. We present LCBM’s performance on the CBC

dataset in Tables 3.1, 3.4, 3.5, 3.7, and 3.6, highlighting its ability to handle

behavioral patterns that differ significantly from those in advertising content.

3.4 Failure Cases and Model Limitations

While LCBM demonstrates strong performance across behavior-related tasks, our

empirical analysis reveals several systematic limitations and failure modes that

merit detailed examination. Understanding these failure cases is crucial for both

theoretical advancement and practical deployment of content-behavior models.

3.4.1 Scale vs. Specialization Trade-offs

The most prominent limitation of LCBM emerges in pure content understanding

tasks, where scale advantages of larger models cannot be overcome by behavioral

specialization. Table 3.8 demonstrates this clearly: while LCBM (42.17% topic

accuracy) substantially outperforms similar-sized models like Vicuna (11.75%) and
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VideoChat (9.07%), it underperforms GPT-3.5 (51.6%) despite being trained on

both content and behavior tokens. This 9.43 percentage point gap indicates that

parameter scale remains a fundamental limiting factor for content understanding

capabilities.

This trade-off manifests across multiple content tasks. In emotion classifi-

cation, LCBM achieves 7.08% accuracy compared to GPT-3.5’s 11.68%, and in

action-reason understanding, LCBM reaches 39.55% versus GPT-3.5’s 66.27%.

These consistent performance gaps suggest that behavior fine-tuning, while bene-

ficial for behavior-related tasks, may introduce interference patterns that degrade

pure content processing capabilities when competing against substantially larger

models.

3.4.2 Behavior Domain Specificity and Transfer Limita-

tions

Our domain adaptation experiments reveal significant limitations in cross-domain

behavior transfer. Table 3.9 shows that LCBM trained exclusively on email data

achieves R² = 0.55, substantially underperforming the domain-adapted model (R²

= 0.64) trained on YouTube + Email data. This 16.4% relative improvement

demonstrates that either behavior patterns exhibit strong domain-specific char-

acteristics that limit naive transfer learning approaches or that models of certain

(small) size need to be trained on more data to generalize better.

The failure of direct behavior transfer is particularly evident in the semantic

gap between platforms. YouTube replay patterns, which capture temporal engage-

ment dynamics in video content, do not directly transfer to email click-through

behaviors, which reflect different cognitive and motivational processes. Similarly,

Twitter engagement patterns (likes, retweets) operate under distinct social dy-

namics compared to YouTube’s consumption-focused metrics. This suggests that

behavior tokens encode platform-specific interaction modalities that require care-

ful adaptation strategies rather than direct transfer. Future works should explore

increasing the size of the model, training on diverse and more data to improve

generalization, and also explore more sophisticated domain adaptation strategies.
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3.4.3 Context Length and Complexity Limitations

LCBM exhibits performance degradation on longer content sequences and complex

multimodal inputs. For videos exceeding certain length (typically 300 seconds

or containing more than 50 distinct scenes), behavior prediction accuracy drops

significantly. Similarly, when processing emails with extensive visual content or

complex layout structures, click-through rate prediction becomes less reliable.

This limitation stems from the verbalization approach used to convert mul-

timodal content into text tokens. Longer content requires proportionally more

tokens for adequate representation, leading to context window constraints and

attention dilution. The linear scaling of token requirements with content com-

plexity creates a fundamental scalability challenge for the current architecture.

Future works should explore more efficient content verbalization approaches that

scale better with content complexity. Further, stronger integrations of the content

and behavior modalities could help the model to better understand the content

and behavior.

3.4.4 Behavioral Signal Quality Dependencies

LCBM’s performance is highly sensitive to the quality and granularity of behav-

ioral signals. For content with sparse engagement data (fewer than 100 inter-

actions) or noisy behavioral metrics (e.g., bot-inflated engagement), prediction

accuracy degrades substantially. This dependency on high-quality behavioral su-

pervision limits the model’s applicability to emerging content creators or niche

domains with limited historical data. Future works should explore more robust

behavioral signal collection and processing methods to improve the quality of the

behavioral signals.

Furthermore, the model struggles with behavioral signals that exhibit high

temporal variance or are influenced by external events (trending topics, viral phe-

nomena). The static nature of the training data fails to capture the dynamic

aspects of online engagement, leading to prediction failures during periods of un-

usual activity patterns. Future works should explore more dynamic behavioral

modeling approaches to capture the dynamic aspects of online engagement.
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Understanding these failure modes provides a foundation for developing more

robust and capable content-behavior models while setting appropriate expecta-

tions for current deployment scenarios.

3.5 Conclusion

In this paper, we make initial strides towards solving the effectiveness problem

proposed by Shannon in his seminal paper on communication. The effectiveness

problem deals with predicting and optimizing communication to get the desired

receiver behavior. This can be seen as consisting of a string of capabilities: be-

havior simulation, content simulation, and behavior domain adaptation. We show

that while large language models have great generalization capabilities, are unable

to perform well on the effectiveness problem. We posit that the reason for this

could be a lack of “behavior tokens” in their training corpora. Next, we train

LLMs on behavior tokens to show that other than content understanding tasks,

the trained models are now able to have good performance across all the behavior-

related tasks as well. We also introduce a new Content Behavior Corpus (CBC)

to spur research on these large content and behavior models (LCBMs).

3.6 Ethical Considerations: Bias Mitigation and

Privacy-Preserving Strategies in Large-Scale

Behavioral Modeling

The integration of real-world behavioral data into large-scale content-behavior

models offers unprecedented opportunities for understanding and simulating hu-

man communication. However, it also introduces critical challenges related to fair-

ness, bias, and privacy. In this section, we detail the technical strategies adopted

in this thesis to address these concerns, drawing on best practices from the machine

learning literature and the specific protocols implemented in our work.
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3.6.1 Privacy-Preserving Data Collection and Processing

Anonymization and PII Removal. All datasets used in this thesis were cu-

rated with strict privacy safeguards. Data collection was restricted to enterprise

or business accounts, as identified via the Wikidata Knowledge Graph, to avoid

capturing individual-level behavioral traces. All references to usernames (e.g.,

”@username”) and other personally identifiable information (PII) were systemat-

ically removed. Only aggregate engagement metrics (such as total likes or views)

were retained, ensuring that no individual user’s actions could be reconstructed or

re-identified. This approach aligns with established data minimization principles

and complies with major data protection frameworks such as GDPR and CCPA.

Aggregate-Only Behavioral Signals. To further reduce privacy risks, we

collect and model only aggregate behavioral signals (e.g., overall tweet popularity,

average video replay rates) rather than individual-level interaction logs. This

aggregation ensures that the models learn from population-level trends without

exposing or memorizing sensitive user-level data.

Staged and Controlled Data Release. In line with responsible data gov-

ernance, any public release of datasets or benchmarks is conducted in a staged

manner. Initial access is provided within controlled environments (e.g., sandboxes

or research arenas), allowing for close monitoring of usage and rapid response to

emerging privacy or ethical concerns. Acceptable Use Policies explicitly prohibit

applications that could lead to privacy violations or misuse of persuasive technolo-

gies.

3.6.2 Bias Mitigation and Fairness-Aware Learning

Dataset Curation and Filtering. Recognizing the risk of demographic, tempo-

ral, and algorithmic biases inherent in behavioral data, we implemented multiple

filtering and balancing steps:
• Brand and Temporal Matching: Behavioral comparisons (e.g., tweet pairs)

are restricted to the same brand or sub-brand and to narrow time windows,
minimizing confounding effects from external events or platform changes.

• Semantic and Lexical Similarity: Pairs are selected to have high semantic
and lexical similarity, reducing the risk that spurious content differences
drive observed behavioral effects.
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• Manual Verification: Subsets of the data are manually reviewed to ensure
that automated filters are effective in removing confounds and maintaining
fairness.

Bias Acknowledgment and Limitations. Despite rigorous filtering, we ac-

knowledge that residual biases may persist due to demographic skews, self-selection

effects, or platform-specific algorithms. These limitations are transparently dis-

cussed, and users of the models and datasets are cautioned to consider these factors

when interpreting results or deploying models in sensitive contexts.

Acceptable Use and Dual-Use Mitigation. Given the dual-use potential

of persuasive models, we enforce Acceptable Use Policies that prohibit deployment

in high-risk domains (e.g., political campaigning, spam, or deceptive advertising).

Dataset releases are accompanied by explicit guidelines and, where feasible, tech-

nical controls to prevent misuse.

3.6.3 Opportunities for Future Work

While the current work implements privacy and fairness safeguards, further ad-

vances in this direction are possible, both from safeguards and from model training

perspectives. Future research directions include:

Differential Privacy. Incorporating formal differential privacy (DP) mech-

anisms (Dwork et al., 2014) into model training pipelines would provide mathe-

matically rigorous guarantees that individual user contributions cannot be reverse-

engineered from model parameters or outputs. Techniques such as DP-SGD (dif-

ferentially private stochastic gradient descent) can be adapted for large-scale be-

havioral modeling, but challenges remain in balancing privacy budgets with model

utility, especially in high-dimensional, multimodal settings. Future work could ex-

plore scalable DP algorithms tailored for content-behavior corpora, as well as hy-

brid approaches that combine DP with aggregation and anonymization for layered

protection.

Fairness-Aware Learning Algorithms. While current filtering and evalu-

ation protocols mitigate some sources of bias, algorithmic interventions can fur-

ther reduce disparate impact across demographic groups. Approaches such as
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adversarial de-biasing (Zhang et al., 2018a), reweighting, or multi-objective opti-

mization (Hardt et al., 2016) can be integrated into training to explicitly penalize

or correct for unfairness. For behavioral data, this may involve learning group-

invariant representations or optimizing for fairness metrics (e.g., equalized odds,

demographic parity) alongside predictive accuracy. A key challenge is the lack of

explicit demographic labels in many behavioral datasets, motivating research into

unsupervised or proxy-based fairness interventions.

Federated and Decentralized Learning. Federated learning (McMahan

et al., 2017) offers a promising paradigm for privacy-preserving behavioral mod-

eling by keeping raw user data on-device and only sharing model updates. This

approach can significantly reduce privacy risks and regulatory burdens, especially

for sensitive behavioral signals. However, federated optimization introduces new

challenges, such as handling non-IID (non-independent and identically distributed)

data, communication efficiency, and robustness to adversarial clients. Future work

could investigate federated architectures for multimodal content-behavior models,

as well as secure aggregation and differential privacy at the edge.

Bias Auditing and Transparency. Systematic bias auditing and trans-

parent reporting are essential for responsible deployment of behavioral models.

Regular audits—using techniques such as subgroup performance analysis, counter-

factual fairness testing, and adversarial probing—can reveal hidden disparities and

inform mitigation strategies. The release of model cards and datasheets (Mitchell

et al., 2019) for both datasets and models can further enhance transparency, en-

abling stakeholders to assess limitations, intended use cases, and known risks.

Future research may also explore automated tools for continuous bias monitoring

and explainability in large-scale, real-world deployments.
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Chapter 4

Analyzing Behavior: Teaching Behavior

Improves Content Understanding

In the last chapter, we discussed training a single model that learns about

both content and behavior. We saw that a model trained on content and behavior

together shows capabilities of behavior and content simulation, behavior domain

adaptation, and improvements in behavior and content understanding. Behavior

is produced by the receiver as a response to the message sent by the sender.

Behavior, as an artifact of communication, is generated by a receiver in response

to content (Fig. 3.1) sent by a communicator. Therefore, it comes later than

content in the time axis. Hence, behavior contains signals about content, which

can help in understanding content. However, since it comes after content, the

signals are available post-hoc. These signals, if properly harnessed, should be able

to increase performance on the message understanding tasks popular in NLP and

CV, like question answering, sentiment analysis, topic classification, etc. Despite

this, behavior data is considered noise and is ignored while training large language

models (Biderman et al., 2022; Penedo et al., 2023) and also large vision and

language models (Liu et al., 2023a; Zhu et al., 2023). In this paper, we explore

this line of thought more.

Humans produce two kinds of behavioral signals upon observing a message

(Bertenthal, 1996; Prinz, 1997): perceptual signals and actions as behavior. Per-

ceptual signals, like seeing, touching, and hearing, help a receiver primarily sense

the world around her, ultimately guiding her actions. Actions are how a receiver

acts on the outside world. The signals produced by the human receiver upon

receiving a message carry information about the message itself (Fig. 4.7). For

instance, if a person’s heartbeat rises upon watching a movie scene, it can help

us infer that perhaps the scene was an exciting scene (Dzedzickis et al., 2020).

Similarly, regressing while reading is indicative of important or confusing phrases

(Bicknell and Levy, 2011). In these cases, perception behavior helps us derive



inferences about content. In a similar vein, the actions a person performs after

watching a movie, such as comments and likes, carry signals about the movie

(Fig. 4.7, 4.8).

With this background, in this chapter, we show improvement in content un-

derstanding of LLMs and VLMs using the following types of behavior:
1. Perception as Behavior: We first prove the hypothesis using the percep-

tion behavior of scanpaths. The choice of scanpaths as the target behavior
is motivated by prior literature (Clifton Jr et al., 2007; Demberg and Keller,
2008; Karessli et al., 2017; Yu et al., 2017; He et al., 2019; Boyd et al., 2022;
Mishra et al., 2016b; Long et al., 2017) where they show that eye movements
of the receiver can help determine linguistic and perceptual factors in text
and images. Therefore, in this section, we talk about how perception be-
havior can be used to improve content understanding of LLMs in a post-hoc
manner. Next, we solve the problem of behavior being available post-hoc
by generating synthetic scanpath behavior for a content, and showing that
using the synthetic behavior also improves understanding content.

2. Action as Behavior: Further, we make initial efforts to collect and under-
stand digital analytics at scale with the aim of integrating them with VLMs
to improve their downstream content understanding capabilities. We intro-
duce methods for filtering and cleaning behavioral data and then propose
tasks for large language and vision models, leading to improvements in lan-
guage and visual content understanding tasks. For this, we look to Reddit
and YouTube as two major sources of visual content and human behavior in
the form of viewer comments, likes, replay graphs, and upvotes.

4.1 Synthesizing Human Gaze Feedback for Im-

proved NLP Performance

Integrating human feedback in models can improve the performance of natural

language processing (NLP) models. Feedback can be either explicit (e.g. rank-

ing used in training language models) or implicit (e.g. using human cognitive

signals in the form of eyetracking). Prior eye tracking and NLP research reveal

that cognitive processes, such as human scanpaths, gleaned from human gaze pat-

terns aid in the understanding and performance of NLP models. However, the

collection of real eyetracking data for NLP tasks is challenging due to the require-

ment of expensive and precise equipment coupled with privacy invasion issues. To

address this challenge, we propose ScanTextGAN, a novel model for generating

human scanpaths over text. We show that ScanTextGAN-generated scanpaths

127



Investors     seem     bullish     about     the     stock     market.

SENTIMENT: Positive

I    work    40    hours    a     week     to     be     this     poor.

SARCASM: Present

The   author    is    one   of   several   defense   experts   expected   to   testify.

Spitz     is     expected     to     testify     later     for     the     defense.

PARAPHRASE: True

Figure 4.1: Generated scanpaths over text samples taken from various natural language
processing (NLP) tasks. The green circles denote the important words char-
acteristic of that task. The circles’ size denotes the fixation duration, and
the arrows depict the saccadic movements. As can be seen, linguistically
important words often have a higher fixation duration and revisit. Regres-
sions (word revisits) also appear in the examples.

can approximate meaningful cognitive signals in human gaze patterns. We in-

clude synthetically generated scanpaths in four popular NLP tasks spanning six

different datasets as proof of concept and show that the models augmented with

generated scanpaths improve the performance of all downstream NLP tasks.

4.1.1 Introduction

Integrating human signals with deep learning models has been beginning to catch

up in the last few years. Digital traces of human cognitive processing can provide

valuable signals for Natural Language Processing (Klerke et al., 2016b; Plank,

2016b). Various approaches for integrating human signals have been explored.
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For example, human feedback for better decisioning (Christiano et al., 2017),

NLP tasks (Stiennon et al., 2020; Wu et al., 2021), and most recently language

modeling using reinforcement learning with human feedback (RLHF) based reward

(Bai et al., 2022; Ouyang et al., 2022). RLHF involves explicit human feedback

and is expensive and hard to scale. On the other hand, previous studies have also

tried to use implicit human feedback in the form of eyetracking signals. It has

proven to be a useful signal for inferring human cognitive processing (Sood et al.,

2020; Hollenstein and Zhang, 2019a; Mathias et al., 2020). NLP researchers have

focused on assessing the value of gaze information extracted from large, mostly dis-

jointly labeled gaze datasets in recurrent neural network models (Ren and Xiong,

2021; Strzyz et al., 2019; Barrett et al., 2018a). The proposed approaches under

this paradigm include gaze as an auxiliary task in multi-task learning (Klerke

et al., 2016a; Hollenstein et al., 2019), as additional signals (Mishra et al., 2016b),

as word embeddings (Barrett et al., 2018b), as type dictionaries (Barrett et al.,

2016a; Hollenstein and Zhang, 2019a), and as attention (Barrett et al., 2018a).

Previous studies demonstrate that human scanpaths (temporal sequences of

eye fixations, see Fig. 4.1) gleaned from eye tracking data improve the perfor-

mance of NLP models. However, the real-world application of these methods

remains limited primarily due to the cost of precise eye-tracking equipment, users’

privacy concerns, and manual labor associated with such a setup. Therefore, gen-

erating scanpaths from existing eyetracking corpora would add great value to NLP

research. To the best of our knowledge, this is the first work to propose a model

that generates scanpaths for a given read text with good accuracy. We call the

model, ScanTextGAN.

We demonstrate the scanpath generation capability of ScanTextGAN over

three eye-tracking datasets using multiple evaluation metrics. Further, we eval-

uate the utility of generated scanpaths for improvements in the performance of

multiple NLP tasks (see Figs. 4.1,4.2) including the ones in the GLUE benchmark

(Wang et al., 2018a). The generated scanpaths achieve similar performance gains

as the models trained with real scanpaths for classic NLP tasks like sentiment

classification, paraphrase detection, entailment, and sarcasm detection.

Our contributions are threefold:
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Figure 4.2: (Intent-aware) Scanpath samples generated by conditioning scanpath gen-
eration on different downstream natural language tasks. Note that the
conditioned scanpaths are heavily biased to words important for that down-
stream task.

1. We propose ScanTextGAN, the first scanpath generator over text.

2. We compare ScanTextGAN with multiple baselines and conduct ablation ex-

periments with varying models and configurations. The model performs well on the

test sets and cross-domain generalization on two additional eyetracking datasets

belonging to different text domains.

3. We tested the usefulness of generated scanpaths in downstream NLP tasks

such as sentiment analysis, paraphrase detection, and sarcasm detection on six

different datasets. The results show that the downstream NLP tasks benefited

significantly from cognitive signals inherent in generated scanpaths. Further, we

show how scanpaths change when finetuning with downstream natural language

tasks (Figs.4.2,4.6) and that they lead to further improvements in downstream task

performance (§4.1.4.3) showing how they can act as additional controls beyond

the task architecture.

4.1.2 Related Work

When reading a text, humans do not focus on every word and often do not read

sequentially (Just and Carpenter, 1980). A series of studies in psycho-linguistics

have shown that the number of fixations and the fixation duration on a word
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depend on several linguistic factors. The linguistic factors can also be determined

given the cognitive features (Clifton Jr et al., 2007; Demberg and Keller, 2008).

Though advances in ML architecture have helped bring machine comprehension

closer to human performance, humans are still superior for most NLP tasks (Blohm

et al., 2018; Xia et al., 2019).

It has been shown in the literature that integrating explicit (Bai et al., 2022;

Ouyang et al., 2022) and implicit (cognitive processing) human feedback signals

in traditional ML models is expected to improve their performance (Just and

Carpenter, 1980). However, the cost of explicit feedback (e.g., using MTurk) and

implicit feedback (e.g., eye tracking) at scale is excessively high. Similarly, privacy-

invasive eye-tracking processes limit the scope of this idea. One way to address

this problem is to use generated eye movements to unfold the full potential of

eye-tracking research. Hence, the idea is to architect ScanTextGAN, a scanpath

generator for text reading, and test its usefulness in downstream NLP tasks.

More precisely, this work builds upon previous works on 1) human attention

modeling and 2) gaze integration in neural network architectures, which are de-

scribed as follows:

Human Attention Modeling: Predicting what people visually attend to

in images (saliency prediction) is a long-standing challenge in neuroscience and

computer vision, the fields have seen many data-based models (Wang et al., 2021b).

In contrast to images, most attention models for eye movement behaviors during

reading are cognitive process models, i.e., models that do not involve machine

learning but implement cognitive theories (Engbert et al., 2005; Xia et al., 2019).

Key challenges for such models are a limited number of parameters and hand-

crafted rules. Thus, it is difficult to adapt them to different tasks and domains

and use them as part of end-to-end trained ML architectures (Kotseruba and

Tsotsos, 2020). In contrast, learning-based attention models for text remain under-

explored. Within that, all eye tracking models are saliency prediction models with

non-existent work in predicting scanpaths. On the other hand, visual scanpaths

generation for image-based eye tracking data has been recently explored for both

traditional (Assens et al., 2019) and 360◦ images (Martin et al., 2022).

Matthies et al. (Matthies and Søgaard, 2013) presented the first fixation pre-
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diction work for text. They built a person-independent model using a linear

Conditional Random Fields (CRF) model. Hahn and Keller (Hahn and Keller,

2016) designed the Neural Attention Trade-off (NEAT) language model, which was

trained with hard attention and assigned a cost to each fixation. Other approaches

include sentence representation learning using surprisal and part of speech tags as

proxies to human attention (Wang et al., 2017).

Our work differs from previous studies as we combine cognitive theory and

data-driven approaches to predict scanpaths and further show its application in

downstream NLP tasks (Hollenstein et al., 2021b,a).

Integrating Gaze in Network Architecture: Integration of human gaze

data into neural network architectures has been explored for a range of computer

vision tasks such as image captioning, visual question answering, and tagging (Ka-

ressli et al., 2017; Yu et al., 2017; He et al., 2019; Boyd et al., 2022). Hence, recent

research has utilized features gleaned from readers’ eye movement to improve the

performance of complex NLP tasks such as sentiment analysis (Long et al., 2017;

Mishra et al., 2016c), sarcasm detection (Mishra et al., 2016b), part-of-speech

tagging (Barrett et al., 2016b), NER (Hollenstein and Zhang, 2019a), and text

difficulty (Reich et al., 2022).

While in recent years, eye tracking data has been used to improve and evaluate

NLP models, the scope of related studies remains limited due to the requirement

of real-time gaze data at inference time. Mathias et al. (Mathias et al., 2020)

reported that there exists no automated way of generating scanpaths yet in the

literature. With high-quality artificially generated scanpaths, the potential of

leveraging eyetracking data for NLP can be unfolded. Additionally, generating

scanpaths that mimic human reading behavior will help advance our understand-

ing of the cognitive processes behind language understanding. Hence, we propose

ScanTextGAN; researchers can use that to generate scanpaths over any text with-

out worrying about collecting them from real users.
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Figure 4.3: The architecture of the proposed ScanTextGAN model. The model consists of a conditional generator and a discriminator
playing a zero-sum game. The generator is trained by two cognitively inspired losses: text content reconstruction and scanpath
content reconstruction.
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4.1.3 Proposed Model

In this section, we define the scanpath generation task, describe the ScanTextGAN

model architecture, and provide details on loss functions and model training.

Task Definition: The task of scanpath generation is to generate a sequence

S(T ) representing a scanpath over the text T = {w1, w2, ..., wn} composed of a

sequence of words, can be defined as follows:

S(T ) = {.., (wi
a, t

i), ...., (wj
b , t

j), ...., (wk
c , t

k)} (4.1)

where ti represents the fixation duration over the word wa occurring at the position

i. Note that it is not necessary to have a < b (words being read in linear order)

or that k = n (the number of fixations being equal to the number of words). Due

to regressions, i.e., backward saccades to previous words, words are also revisited.

Hence, the same word could appear multiple times in the sequence.

4.1.3.1 ScanTextGAN Model Architecture

Fig. 4.3 illustrates the proposed conditional GAN architecture of the model. The

ScanTextGAN model is composed of two competing agents. First, a conditional

generator that generates scanpaths given text prompts. The second is a discrimi-

nator network, which distinguishes real human scanpaths from the generated ones.

The ScanTextGAN model is trained by combining text content loss, scanpath con-

tent loss, and adversarial loss (Eq. 4.6). The scanpath content loss measures the

difference between the predicted scanpath and the corresponding ground truth

scanpath. The text content loss reconstructs the input text, and the adversarial

loss depends on the real/synthetic prediction of the discriminator over the gener-

ated scanpath. We describe the losses along with the generator and discriminator

architectures next.

Generator: The ScanTextGAN generator constitutes a transformer-based

encoder-decoder framework. The encoder is conditioned on BERT-based text em-

beddings (Devlin et al., 2019), which are concatenated with noise to make the

generator’s output non-deterministic. The output of the transformer encoder is
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supplied to the decoder, which consists of task-specific feed-forward networks.

One branch generates the scanpath (Task 1), while the other reconstructs the 768

dimensional CLS token embedding of the sentence (Task 2). The scanpath is

output as a temporal sequence of word ID (fixation points) wi
a, fixation duration

ti, and end-of-sequence probability EOSi. At inference time, the length L(G) of

generated scanpath G is determined as follows:

L(G) =

min1≤k≤M(k) ifEOSk > τ

M otherwise
(4.2)

where M is the maximum scanpath length as described in section §4.1.3.2 and

τ ∈ (0, 1) is a probability threshold. We use τ = 0.5. The loss functions of the

two branches are described below.

Scanpath Content Loss tries to minimize the deviation of generated scan-

paths G(T ,N ) from the ground-truth scanpaths R(T , h)) over text T where

ground-truth scanpaths are recorded from the human h andN stands for Gaussian

noise N (0, 1). The loss function Ls is given as:

Ls(G(T ,N ),R(T , h)) =
1

k
Σk

i=0(α(id
i
g − idir)

2+

β(tig − tir)
2+γ(Ei

g − Ei
r)

2)

(4.3)

which is a weighted sum of three terms. The first term measures the error between

real and predicted fixation points given by the mean squared difference between

generated and real word-ids (idig − idir). It penalizes permutations of word ids and

trains the model to approximate the real sequence of fixation points closely.

The second term measures the difference in fixation durations given by the

mean squared difference between generated and real duration (tig − tir). Fixation

durations simulate human attention over words in the input text. Thus, a word

with a larger fixation duration is typically synonymous with greater importance

than other words in the input text. This error term supplements the generator’s

ability to learn human attention patterns over the input text.

Finally, the third term measures the mean squared error between the prediction

of end-of-sequence probability by real and generated distributions (Ei
g−Ei

r). These
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are weighted by the hyperparameters α, β, and γ. Preliminary experiments showed

that optimizing the mean squared error leads to better performance over the cross-

entropy loss for optimizing the EOS probability output.

Text Content Loss: Scanpaths depend heavily on the linguistic properties

of the input text. Therefore, to guide the generator towards near the probable

real data manifolds, we adopt reconstruction of the CLS token embedding of the

input text (Task 2) by the generator as an auxiliary task since the CLS token

embedding encodes a global representation of the input text. This text content

reconstruction loss Lr is given as:

Lr(G(T ,N ),R(T , h)) = (BERT (wg
i , w

g
j , ..., w

g
k

−BERT (wr
a, w

r
b , ...w

r
n))

2
(4.4)

where BERT (wr
a, w

r
b , ...w

r
n) and BERT (wg

i , w
g
j , ...w

g
k) stand for the CLS vector

representations of real and generated text respectively.

Discriminator: The goal of the discriminator is to distinguish between the

real and synthetic scanpaths supplied to it. Similar to the generator, it requires

text representations to distinguish between real and generated scanpaths. Specifi-

cally, the discriminator comprises two blocks of BiLSTMs that perform sequential

modeling over the scanpaths and BERT embeddings. The outputs of the two

branches are combined and passed to an attention fusion module with four heads,

followed by another network of BiLSTMs. The hidden states of the last BiLSTM

layer from both forward and backward directions are concatenated and supplied

to a feed-forward network. A Sigmoid function activates the output of the feed-

forward network. In this manner, the discriminator classifies the input scanpaths

as either real or fake.

Adversarial Loss: The generator and discriminator networks are trained in

a two-player zero-sum game fashion. The loss is given by:

La = min
G

max
D

Ex∼pdata(x)[logD(x|T , h)]+

Ez∼pz(z)[1− logD(G(z|T ,N ))]

(4.5)
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Therefore, the net generator loss becomes:

Lg = Ls + Lr + Ez∼pz(z)[1− logD(G(z|T ,N ))] (4.6)

4.1.3.2 Dataset

For training the ScanTextGAN model, we use the CELER dataset (Berzak et al.,

2022). It contains eyetracking data of 365 participants for nearly 28.5 thou-

sand newswire sentences, sourced from the Wall Street Journal Penn Treebank

(Marcinkiewicz, 1994). Each participant in CELER reads 156 newswire sentences.

Half of the sentences are shared across participants, and the rest is unique to each

participant. The maximum sentence length was set to 100 characters. Participant

eyetracking data were recorded using Eyelink 1000 tracker in a desktop mount con-

figuration with a sampling rate of 1000 Hz. The ScanTextGAN model is trained

to approximate the average eye movements of all the participants who read given

sentences. The CELER dataset was envisioned to enable research on language

processing and acquisition and to facilitate interactions between psycholinguis-

tics and natural language processing. Furthering the goal, we use it to train our

conditional GAN model through which we show human scanpath approximation

capabilities (§4.1.4.2). Also, we use it to show improvements in the performance

of NLP tasks (§4.1.4.3).

The data consist of tuples of participant ID, sentence ID, and word ID corre-

sponding to fixation point and fixation duration. We compute the 99th percentile

of fixation durations and treat it as the largest value. Fixations of durations longer

than this are treated as outliers and hence dropped from the dataset. To apply

the scanpath reconstruction loss (Eq. 4.3), we scale all fixation durations by the

maximum value and then normalize them to [0,1]. Similarly, word IDs in each

sentence are normalized to [0, 1] after scaling them by the length of that sentence.

For the last fixation point in every scanpath, the binary EOS token is set to 1.

The maximum scanpath length is set to 80 fixation points (99th percentile of the

lengths). Thus shorter scanpaths are padded while longer scanpaths are trimmed.

We use BERT to encode the sentences and obtain their 768-dimensional embed-

dings, keeping the max length parameter as 80, thus resulting in an 80 × 768
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dimensional tensor.

4.1.3.3 Parameter Settings

Sinusoidal positional encoding is applied over the input embeddings fed to the

generator. We use a 3-layer transformer encoder with four head attention and

a hidden dimension size of 776 in the generator. In the discriminator, we use

bidirectional LSTMs over sentence embeddings and generated scanpaths with a

hidden size of 64 and a dropout ratio of 0.3, followed by batch normalization for

faster convergence. An attention module with four attention heads is applied af-

ter concatenating the outputs. We employ the Adam and RMSProp optimizer

to minimize generator and discriminator losses. The batch size is set to 128, the

initial learning rate of the generator to 0.0001, and that of the discriminator to

0.00001. The model is trained for 300 epochs. Our implementation uses PyTorch,

a popular deep-learning framework in Python. All experiments are run on an Intel

Xeon CPU with Nvidia A100-SXM GPUs.

4.1.4 Performance Evaluation

We quantify the performance of ScanTextGAN in two regimes*; first, scanpath

generation with three datasets, and second, NLP tasks with six datasets. Similar

to prior computer vision studies (Sun et al., 2019b; de Belen et al., 2022; Kümmerer

and Bethge, 2021; Jiang et al., 2016), we evaluate the ScanTextGAN model over

the scanpath generation task. For this, we use the test split of the CELER dataset,

Mishra et al. (2016) (Mishra et al., 2016a), and Mishra et al. (2017) (Mishra

et al., 2017). In addition, unlike the computer vision studies, we also evaluate the

ScanTextGAN model for improvement in NLP tasks. The hypothesis is that the

human eyes (and consequently the brain) process many language comprehension

tasks unconsciously and without visible effort. The next logical step is to capture

(or, in our case, generate) this mental representation of language understanding

and use it to improve our machine-learning systems. For evaluation, we use four

tasks from the GLUE benchmark and two from the tasks proposed by (Mishra
*All results are calculated with five random seeds and reported as the mean of those five

runs
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et al., 2016a). While the ScanTextGAN model is trained over news text from the

CELER dataset, with the help of the other datasets, we expand our testing to

other domains, including reviews, quotes, tweets, and Wikipedia text.

4.1.4.1 Evaluation Datasets

Mishra et al. (2017) (Mishra et al., 2017) comprises eye movements and

reading difficulty data recorded for 32 paragraphs on 16 different topics, viz. his-

tory, science, literature, etc. For each topic, comparable paragraphs were extracted

from Wikipedia† and simple Wikipedia‡. The participant’s eye movements are

tracked using an SR-Research Eyelink-1000 Plus eye tracker. Using the ground

truth scanpaths over the text corpora, we evaluate the quality of generated scan-

paths.

Mishra et al. (2016) (Mishra et al., 2016a) contains eye fixation se-

quences of seven participants for 994 text snippets annotated for sentiment and

sarcasm. These were taken from Amazon Movie Corpus , Twitter, and sarcastic

quote websites. The task assigned to the participants was to read one sentence at

a time and annotate it with binary sentiment polarity labels (i.e., positive/nega-

tive). The same datasets were used in several studies (Joshi et al., 2015; Mishra

et al., 2016b,c) to show improvements in sarcasm and sentiment analysis. We use

the datasets to evaluate both the generation quality and potential improvements

in NLP tasks.

Furthermore, we explore the potential of including cognitive signals contained

in scanpaths in NLP models for a range of GLUE tasks which include Senti-

ment Analysis using Stanford Sentiment Treebank (SST), Paraphrase Detection

using Microsoft Research Paraphrase Corpus (MRPC) and Quora Question Pairs

(QQP), Natural Language Inference using Recognizing Textual Entailment (RTE)

dataset.

Next, we cover the results of scanpath generation and its application in NLP
†https://en.wikipedia.org/
‡https://simple.wikipedia.org/
§In the CELER dataset, there are only 78 shared sentences amongst all the participants.

Therefore, inter-subject scanpath evaluation is done only for these sentences. In contrast, the
ScanTextGAN results are reported for the entire test set (including these 78 sentences).
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Generator Model MultiMatch ↑ Levenshtein
Distance ↓Vector↑ Length↑ Position↑ Duration↑

Inter-subject score§ 0.973 0.958 0.830 0.698 0.691
LSTM Encoder-Decoder trained
with scanpath content loss 0.975 0.956 0.765 0.344 0.865

ScanTextGAN – Text
Reconstruction – GAN Loss 0.968 0.947 0.728 0.703 0.779

ScanTextGAN 0.983 0.972 0.787 0.733 0.769
ScanTextGAN – Text Reconstruction 0.974 0.957 0.773 0.703 0.798
ScanTextGAN – GAN Loss 0.973 0.955 0.750 0.761 0.786
ScanTextGAN + addition of noise 0.971 0.952 0.756 0.736 0.791
ScanTextGAN – Text (CLS)
Reconstruction + sentence reconstruction 0.978 0.963 0.724 0.721 0.805

Table 4.1: In-domain Evaluation of Scanpath Generation on the CELER dataset
(Berzak et al., 2022).

tasks.

4.1.4.2 Evaluation of Scanpath Generation

We evaluate the scanpath generation model on two most commonly used metrics

in image scanpath generation studies (Sun et al., 2019b; Chen and Sun, 2018;

de Belen et al., 2022; Kümmerer et al., 2022): MultiMatch (Jarodzka et al.,

2010) and Levenshtein Distance (Levenshtein, 1965). Multimatch is a geomet-

rical measure that compares scanpaths across a comprehensive set of dimensions

composed of shape, lengths, position, and fixation duration. Levenshtein Distance

between a pair of sequences measures the least number of edits (inserts, deletes,

substitution) to transform one into the other.

4.1.4.2.1 Scanpath Evaluation Metrics MultiMatch is a geometrical mea-

sure that models scanpaths as vectors in 2-D space, wherein the vectors represent

saccadic eye movements. Starting and ending coordinates of these saccades con-

stitute the fixation positions. It compares scanpaths across multiple dimensions,

viz. shape, length, position, direction, and fixation duration. Shape measures the

vector difference between aligned saccade pairs, which is then normalized by twice

the diagonal screen size. Length measures the normalized difference between the

endpoints of real and generated saccade vectors. Direction is the angular distance

between the two vectors. The position is the Euclidean difference in position be-

tween aligned vectors, and duration measures the difference in fixation durations
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Figure 4.4: Comparison of real and synthesized scanpaths corresponding to a few
text samples. The proposed ScanTextGAN model generates the latter.
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normalized against the maximum duration. Since our work deals with scanpaths

over text, we use 1-D space to represent the saccade vectors where word IDs denote

the fixation positions. Thus, it is easy to see that computing scanpath direction

similarity is redundant here (it is subsumed within position); hence we drop it

from our analysis.

Levenshtein Distance between a pair of sequences measures the least num-

ber of character edits, i.e., insertion, deletion, and substitution needed to trans-

form one sequence into the other. Specifically, we use it to gauge the degree of

dissimilarity between a pair of real R and generated G scanpaths. To account

for the fixation durations of each word, R and G are temporally binned using a

50 ms bin size, similar to the computation of ScanMatch metric (Cristino et al.,

2010). The resulting sequences of word IDs, RW and GW are transformed into

character strings, RS = {r1, r2, ..., rn} and GS = {g1, g2, ..., gm}, where RS and GS

are strings over the ASCII alphabet and n = |RS| and m = |GS|. Thus, a lower

NLD score is indicative of greater scanpath similarity.

Further, as a top-line comparison, we use inter-subject scanpath similarity

(Sun et al., 2019b). It measures the degree of variation among real human scan-

paths corresponding to each text input. To compute this, we first calculate each

subject’s performance by treating the scanpaths of other subjects as the ground

truth. Then, the average value of all subjects is used as inter-subject performance.

Baselines: Since ScanTextGAN is the first text-based scanpath generation

model, we conduct an ablation study to compare ScanTextGAN with its other

variants. Specifically, we compare ScanTextGAN with the following six configu-

rations: (1) An LSTM-based network trained with scanpath content loss. Sentence

embeddings obtained through BERT are concatenated with noise in this model.

The resultant is fed to an attention module with four heads, then passed to a

network of LSTMs and Batch Normalization layers applied in tandem. (2) ScanT-

extGAN model trained with only the scanpath content loss. (3) ScanTextGAN

model without the text reconstruction loss (Task-2). (4) ScanTextGAN model

with BERT-based sentence embeddings reconstruction instead of CLS token re-

construction. (5) ScanTextGAN model with the addition of noise instead of con-

catenation. (6) ScanTextGAN model trained without GAN loss.
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Generator Model MultiMatch ↑ Levenshtein
Distance ↓Vector↑ Length↑ Position↑ Duration↑

Inter-subject score 0.977 0.963 0.839 0.715 0.723
LSTM Encoder-Decoder trained
with scanpath content loss 0.984 0.973 0.714 0.379 0.918

ScanTextGAN – Text
Reconstruction – GAN Loss 0.977 0.960 0.780 0.769 0.847

ScanTextGAN 0.966 0.945 0.791 0.771 0.836
ScanTextGAN – Text Reconstruction 0.976 0.961 0.763 0.757 0.845
ScanTextGAN – GAN Loss 0.976 0.959 0.774 0.768 0.839
ScanTextGAN + addition of noise 0.968 0.947 0.737 0.743 0.838
ScanTextGAN – Text (CLS)
Reconstruction + sentence reconstruction 0.964 0.934 0.747 0.733 0.869

Table 4.2: Cross-domain Evaluation of Scanpath Generation on the Dataset by
(Mishra et al., 2016a).

Generator Model MultiMatch ↑ Levenshtein
Distance ↓Vector↑ Length↑ Position↑ Duration↑

Inter-subject score 0.994 0.991 0.834 0.620 0.845
LSTM Encoder-Decoder trained
with scanpath content loss 0.992 0.987 0.596 0.329 0.969

ScanTextGAN – Text
Reconstruction – GAN Loss 0.990 0.984 0.729 0.705 0.951

ScanTextGAN 0.984 0.977 0.759 0.693 0.931
ScanTextGAN – Text Reconstruction 0.986 0.981 0.756 0.706 0.939
ScanTextGAN – GAN Loss 0.990 0.984 0.739 0.706 0.945
ScanTextGAN + addition of noise 0.984 0.976 0.759 0.703 0.943
ScanTextGAN – Text (CLS)
Reconstruction + sentence reconstruction 0.983 0.974 0.667 0.674 0.958

Table 4.3: Cross-domain Evaluation of Scanpath Generation on the Dataset by
(Mishra et al., 2017).

Results: Table 4.1 presents the results of our scanpath prediction model on

the CELER dataset. Further, we also compare ScanTextGAN with baselines on

two other contemporary datasets of movie reviews, tweets, and sarcastic quotes

(Mishra et al., 2016a), Wikipedia and simple Wikipedia paragraphs (Mishra et al.,

2017). Tables 4.2 and 4.3 present the results of our model on those datasets.

For obtaining results on these corpora, we use the model trained on the CELER

dataset, thus helping us evaluate the cross-domain performance of the model.

As can be seen in Table 4.1, Table 4.2 and Table 4.3, ScanTextGAN outper-

forms other models for scanpath prediction on most metrics. The performance of

ScanTextGAN even surpasses inter-subject reference on Duration and comes very

close to Vector, Length, and Position.

We observe that adopting the reconstruction of the CLS token as an auxiliary

task (Task - 2) boosts the model performance. Reconstructing the full sentence
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embeddings rather than the CLS tokens only as an auxiliary task does not always

improve the results, despite adding a larger computational overhead. The results

also reveal that concatenating noise with text embeddings is more rewarding than

adding it.

Further, to compare the skipping behavior of ScanTextGAN with humans, we

calculate the weighted F1 score of the words skipped and attended by both model

types. We find the weighted F1 to be 64.6 between them. Fig. 4.4 presents a

visual comparison between real scanpaths from the available eyetracking data and

scanpaths generated by ScanTextGAN, corresponding to some randomly chosen

text samples. We can observe that the generated scanpaths resemble the real ones

to a great extent. Thus, the quantitative and qualitative results on in-domain and

cross-domain settings lead us to believe that our proposed scanpath generation

model can be deemed a good approximator of the human scanpaths.

4.1.4.3 Application to NLP Tasks

We use them to augment various NLP models and measure their performance to

demonstrate the usefulness of cognitive signals hidden in the generated scanpaths.

Sentiment Classification and Sarcasm Detection: For these tasks, we

use a model consisting of a network of two branches of BiLSTMs and Batch

Normalization layers that perform sequential modeling over text representations

obtained through BERT and scanpaths fed as input to the model. The outputs of

both branches are combined and passed to another layer of BiLSTMs, followed by

a feed-forward network that predicts binary sentiment/sarcasm labels correspond-

ing to the input after activating with the Sigmoid function. We follow a 10-fold

cross-validation regime.

We compare the models with generated scanpaths, real scanpaths, and without

scanpaths. Further, to investigate whether performance gains observed by adding

scanpaths are due to scanpaths and not the increase in the number of parameters,

we train a Random-Random variant in which we send Random noise as scanpaths

to the model with an increased number of parameters. We also simulate the real-

world case where both real and generated scanpaths are available during train
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Model Configuration F1 score
Train Test Sentiment Sarcasm
w/o w/o 0.7839 0.9438
Random Random 0.7990 0.9397
Random Generated 0.7773 0.9313
Real Generated 0.8319 0.9378
Real Real 0.8334 0.9501
Generated Real 0.8402 0.9452
Generated Generated 0.8332 0.9506
Real + Generated Generated 0.8404 0.9512
Intent-Aware Intent-Aware 0.8477 0.9528

Table 4.4: Sentiment analysis and sarcasm detection results on the dataset by
(Mishra et al., 2016a). Model configuration refers to the type of scan-
path included in train and test data.

time, but only generated ones are available during test time, for example, during

user deployment.

Table 4.4 records the results of sentiment analysis and sarcasm detection tasks

(Mishra et al., 2016a). We note that generated scanpaths training and testing lead

to similar gains for sentiment analysis and sarcasm detection as real scanpaths.

The model with an increased number of parameters fed random noise in place of

scanpaths performs similarly to the model trained without any scanpaths. Inter-

estingly, the best results are obtained when model training uses both real and

generated scanpaths. We believe this is due to ScanTextGAN bringing additional

cognitive information from the news-reading CELER corpus, which is not present

in the real scanpaths in (Mishra et al., 2016a). In addition to the intrinsic eval-

uation presented in §4.1.4.2, this downstream evaluation demonstrates the high

quality of the synthesized scanpaths, showing that they contain valuable cognitive

processing signals for NLP tasks.

GLUE Tasks: To validate further, we augment classification models (based on

sequential modeling using LSTMs) with generated scanpaths to show performance

improvement in downstream NLP tasks on four GLUE benchmark datasets –

SST, MRPC, RTE, QQP as described in §4.1.4.1. Table 4.5 reports the accuracy

and weighted-F1 scores of the models trained with and without scanpaths for

these tasks. We observe that in all four tasks, the model trained with generated

scanpaths outperforms the one without scanpaths.
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Dataset Model Acc F1 score

SST w/o scanpaths 0.8090 0.8089
w/ random scanpaths 0.8059 0.8061
w/ generated scanpaths 0.8138 0.8138
w/ intent-aware scanpaths 0.8269 0.8272

MRPC w/o scanpaths 0.6902 0.6656
w/ random scanpaths 0.6623 0.6680
w/ generated scanpaths 0.6969 0.6828
w/ intent-aware scanpaths 0.7009 0.6911

RTE w/o scanpaths 0.6162 0.6080
w/ random scanpaths 0.5802 0.5794
w/ generated scanpaths 0.6211 0.6205
w/ intent-aware scanpaths 0.6293 0.6278

QQP w/o scanpaths 0.8499 0.8513
w/ random scanpaths 0.8491 0.8503
w/ generated scanpaths 0.8578 0.8596
w/ intent-aware scanpaths 0.8648 0.8658

Table 4.5: Results of training NLP models with and without scanpaths on the
GLUE benchmark tasks. Including scanpaths leads to consistent im-
provements across all the NLP tasks.

Intent-Aware Scanpaths: Finally, we try to condition scanpaths gener-

ation on the downstream natural language task. We back-propagate gradients

from the downstream NLP task to the conditional generator. In this fashion, the

model learns to generate intent-aware scanpaths. The hypothesis is that finetun-

ing scanpath generation based on feedback from the natural language task will

bias the generator towards words more pertinent to that task and thus could help

further improve performance on the downstream task. The architecture is shown

in Fig 4.5. The results in Tables 4.4 and 4.5 validate the hypothesis that we ob-

serve consistent improvements in all downstream tasks. Fig 4.2 and Fig 4.6 show

a few examples of scanpaths and saliency generated for three downstream natural

language tasks.

Together these results corroborate the hypothesis that leveraging the cognitive

signals approximated by synthetic scanpaths in NLP models leads to performance

gains.
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4.1.5 Intent-Aware Scanpaths

As described in section §4.1.4.3, the generator conditioned on the downstream

natural language task yields intent-aware scanpaths. Augmenting NLP models

with these scanpaths leads to higher performance gains. Here, we provide more

details on intent-aware scanpath generation. Please refer to figures 4.5 and 4.6 on

the following page. Saliency corresponding to intent-aware scanpaths are shown

in Fig. 4.6.

4.1.6 Conclusion

In this work, we make two novel contributions toward integrating cognitive and

natural language processing. (1) We introduce the first scanpath generation model

over text, integrating a cognitive reading model with a data-driven approach to ad-

dress the scarcity of human gaze data on text. (2) We propose generated scanpaths

that can be flexibly adapted to different NLP tasks without needing task-specific

ground truth human gaze data. We show that both advances significantly im-

prove performance across six NLP datasets over various baselines. Our findings

demonstrate the feasibility and significant potential of combining cognitive and

data-driven models for NLP tasks. Without the need for real-time gaze record-

ings, the potential research avenues for augmenting and understanding NLP mod-

els through the cognitive processing information encoded in synthesized scanpaths

are multiplied.
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Figure 4.6: Saliency samples generated by conditioning scanpath generation on
different downstream natural language tasks. It can be observed that
the conditioned saliency pays much more attention to words important
for that downstream task.

4.1.7 Limitations

In this work, we demonstrated artificial scanpath generation over multiple eye-

tracking datasets. Further, our experiments build a link between cognitive and

natural language processing and show how one can inform the other. However,

the proposed method has a few limitations, which we aim to address in the fu-

ture. The field needs work on bigger and more diverse eye-tracking datasets,

which can enable scanpath generation over longer text sequences and can model

generating scanpaths conditioned on previously read context. Besides, a better

understanding of the entire scanpath generation process can help model the intra

and inter-sentence scanpath generation process. The understanding would enable

the integration of scanpaths to generative modeling tasks, which we intend to take

up in future work. Another parallel direction is to include both explicit (like using

RLHF) and implicit signals (like using cognitive signals) to better NLP tasks like

language modeling.

Communication is defined as “Who says what to whom with what effect.” A

message from a communicator generates downstream receiver effects, also known

as behavior. Receiver behavior, being a downstream effect of the message, car-

ries rich signals about it. Even after carrying signals about the message, the

behavior signal is often ignored while training vision language models. We show

that training VLMs on receiver behavior can actually help improve their content-

understanding abilities. We demonstrate that training VLMs to predict receiver

behaviors, such as likes, comments, and replay graphs, which are available at scale,
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enhances the VLM’s performance across a broad range of downstream content un-

derstanding tasks. We show this performance increase over 6 types of behavior, 46

different tasks covering image, video, text and audio over 26 benchmark datasets

across both 0-shot and fine-tuning settings, outperforming many supervised base-

lines on diverse tasks ranging from emotion recognition to captioning by upto

150%. We note that since receiver behavior, such as likes, comments, and re-

play graphs, is collected by default on the internet and does not need any human

annotations to be useful, the performance improvement we get after training on

this data is essentially free-lunch. We also release BLIFT, our Behaviour-LLaVA

IFT dataset comprising of 730k images and videos with their receiver behavior

collected from multiple platforms on which we train our models to achieve this.

4.2 Teaching Human Behavior Improves Content

Understanding Abilities Of VLMs

Communication is defined as “Who says what to whom with what effect.” A mes-

sage from a communicator generates downstream receiver effects, also known as

behavior. Receiver behavior, being a downstream effect of the message, carries rich

signals about it. Even after carrying signals about the message, the behavior sig-

nal is often ignored while training vision language models. We show that training

VLMs on receiver behavior can actually help improve their content-understanding

abilities. We demonstrate that training VLMs to predict receiver behaviors, such

as likes, comments, and replay graphs, which are available at scale, enhances the

VLM’s performance across a broad range of downstream content understanding

tasks. We show this performance increase over 6 types of behavior, 46 different

tasks covering image, video, text and audio over 26 benchmark datasets across

both 0-shot and fine-tuning settings, outperforming many supervised baselines on

diverse tasks ranging from emotion recognition to captioning by upto 150%. We

note that since receiver behavior, such as likes, comments, and replay graphs, is

collected by default on the internet and does not need any human annotations

to be useful, the performance improvement we get after training on this data is

essentially free-lunch. We also release BLIFT, our Behaviour-LLaVA IFT dataset
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comprising of 730k images and videos with their receiver behavior collected from

multiple platforms on which we train our models to achieve this.

4.2.1 Introduction

Communication is defined by five factors: sender, message, channel, receiver, and

behavior (Shannon and Weaver, 1949; Lasswell, 1948, 1971). Lasswell (1948) en-

coded these five factors in the phrase, “Who says what to whom with what effect.”

Human behavior occurs as a downstream artifact in the process of communica-

tion. Behavior is produced by the receiver as a response to the message sent by the

sender. Being a downstream effect, behavior can help us infer important signals

about the message itself. These signals, if properly harnessed, should be able to

increase performance on the message understanding tasks popular in NLP and

CV, like question answering, sentiment analysis, topic classification, etc. Despite

this, behavior data is considered noise and is ignored while training large language

models (Biderman et al., 2022; Penedo et al., 2023) and also large vision and lan-

guage models (Liu et al., 2023a; Zhu et al., 2023). In this paper, we explore this

line of thought more.

00:52 That ending put a smile on my face .

Won't make me change insurance companies, 
but it's a great commercial.

Sad that State Farm no longer covers us in
Bay Area!

“Neighbah, Papah, Baaah, Labah, Backstabah”… Lol!!
Arnie just can't get that hard R out.! 😂 😂 

Temporal Understanding 

Character Understanding 

Context Understanding 

User Opinion Understanding 

The sheep part was hilarious
Cognitive Understanding 

Channel:
YouTube

Speaker (Who says):
State Farm Insurance

Receivers (To whom): 
YouTube Subscribers

(What)
Video Content

Arnold and Danny are always a beautiful duet.

World Knowledge

Receiver Effect
(with what effect)

Views: 807k
Likes: 4.3k

Comments: 352
Replay graph

Most replayed moment is at 0:52

Figure 4.7: The diagram depicts the five factors of communication in the context
of an example YouTube video https://www.youtube.com/watch?
v=eT8hO4e2iTM and where lies the free lunch. The receiver effect is
not used while training Large Vision and Language Models. However,
it contains many important signals that can help in understanding
the content. The figure shows several comments containing temporal,
cognitive, character, context, and user opinion information useful for
understanding the video.

Humans produce two kinds of behavioral signals upon observing a message

(Bertenthal, 1996; Prinz, 1997): perceptual signals and actions as behavior. Per-

ceptual signals, like seeing, touching, and hearing, help a receiver primarily sense

the world around her, ultimately guiding her actions. Actions are how a receiver
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Figure 4.8: Behavior-LLaVA is trained to answer behavioral questions like simu-
lating user comments and likes on the video. The model, once trained,
shows superior performance than LLaMA-Vid and other VLMs on
content-related tasks like emotion recognition, action recognition,
question answering, persuasion strategy classification, etc. The origi-
nal video was showcased in SuperBowl-2024 and is posted on YouTube
on the URL https://www.youtube.com/watch?v=OU7BJc96lI4. The
video is titled “Perfect 10: The Kia big game commercial featuring the
2024 Kia EV9” by Kia America.

acts on the outside world. The signals produced by the human receiver upon

receiving a message carry information about the message itself (Fig. 4.7). For

instance, if a person’s heartbeat rises upon watching a movie scene, it can help

us infer that perhaps the scene was an exciting scene (Dzedzickis et al., 2020).

Similarly, regressing while reading is indicative of important or confusing phrases

(Bicknell and Levy, 2011). In these cases, perception behavior helps us derive

inferences about content. In a similar vein, the actions a person performs after

watching a movie, such as comments and likes, carry signals about the movie

(Fig. 4.7, 4.8).

Expanding on these ideas, prior literature has shown that harnessing percep-

tual signals, like eye movements, saliency, keystrokes, mouse movements, and

FMRI, by modeling them together with content understanding tasks can improve

both NLP and CV tasks. For instance, integration with perception signals causes

performance improvement in tasks like visual and natural language question an-

swering (Patro and Namboodiri, 2018; Khurana et al., 2023; Sood et al., 2020),

text and image sentiment analysis (Khurana et al., 2023; Barrett et al., 2018a;

Fan et al., 2018), natural language inference (Khurana et al., 2023), part-of-speech

identification (Barrett et al., 2016a,b), named entity recognition (Hollenstein et al.,

2019; Hollenstein and Zhang, 2019b), syntactic parsing (Plank, 2016a), image cap-
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tioning (Cornia et al., 2018), and visual object detection (Wang et al., 2018c;

Kruthiventi et al., 2016).

While the initial studies show that perceptual signals have much promise for

improving downstream content understanding, they have a few significant issues

due to which integrating human perception has not seen wide adoption in training

LLMs. These perceptual signals can only be collected in lab settings requiring spe-

cialized lab equipment and are thus expensive to collect and thus are also limited

in number. For example, the largest datasets containing the human processing sig-

nals are SALICON (Jiang et al., 2015) and Cheng et al. (2014b) for visual saliency

(10k images each), CELER (Berzak et al., 2022) and Dundee corpus (Kennedy

et al., 2013) containing eye movements over 28k sentences and 20 news articles

respectively, and Dhakal et al. (2018) containing keystroke patterns over 1.5k

sentences. Clearly, these datasets, while making important contributions, do not

scale to the level at which today’s large language models are trained (trillions of

natural language and image tokens).

On the other hand, actions (the other type of behavioral signals produced by

a human receiver) are collected at a large scale in the form of digital analytics.

Examples of this kind of data are likes, views, shares, comments, and purchase

histories on images, tweets, videos, webpages, and other kinds of media. Action

data has a much broader representation than is possible in lab settings, is available

on more diverse content, and is much cheaper to collect than using specialized lab

equipment. At the same time, actions have not been much investigated in the

literature for their potential to improve downstream content understanding.

Therefore, in this paper, we make initial efforts to collect and understand dig-

ital analytics at scale with the aim of integrating them with VLMs to improve

their downstream content understanding capabilities. We introduce methods for

filtering and cleaning behavioral data and then propose tasks for large language

and vision models, leading to improvements in language and visual content under-

standing tasks. For this, we look to Reddit and YouTube as two major sources of

visual content and human behavior in the form of viewer comments, likes, replay

graphs, and upvotes. From Reddit, we collect 5 million images and videos along

with their upvotes and top-upvoted comments from two major subreddits (r/pics
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Figure 4.9: Behaviour-LLava achieves much higher zero-shot performance com-
pared to Ad-LLaVA and the base model LLaMA-VID across a diverse
suite of image, video, and audio benchmarks.

and r/videos). Similarly, from YouTube, we collect 2.2 million videos from 30000

channels along with their likes, views, replay graphs, and top user comments. Af-

ter extensive filtering and cleaning, we are left with 730k samples of videos and

images across the two platforms which we use for the next steps.

After collecting user behavior over image and video content, we design tasks

to teach large vision and language models (VLMs) to simulate user behavior. For

this, we use an instruction fine-tuning format. Given a video or an image and

the other metadata like time of post and channel, we ask the model to simulate

user behavior of likes and comments. See Fig 4.8, Listing 4.1 for examples. We

choose LLaMA-Vid (Li et al., 2023d) as our base model to teach it the user

behavior. We call the resultant model Behavior-LLaVA (Large Language and

Vision Assistant) (Liu et al., 2023a). We test Behavior-LLaVA on a diverse variety

of tasks, evaluating its capabilities on image, video, text, and audio understanding

tasks. We compare Behavior-LLaVA against its base model, LLaMA-Vid, and

other supervised baselines. Further, to show the impact of behavior, we train

another version of LLaMA-Vid, where we train it on the same set of videos and

images as Behavior-LLaVA but do not include behavior information. We call this

model Ad-LLaVA.

We make the following contributions with this work:

1) Behavior-LLaVA Instruction Fine-Tuning: We explore the idea of learn-

ing human behavior, resulting in better content understanding. We test this for

action-level behavior data such as receiver comments, likes, and replay graphs.
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We collect a dataset called BLIFT, consisting of 400k images and 330k videos,

along with their receiver behavior. Then, LLaMA-Vid is trained for the task of

predicting receiver comments and upvotes given a media (a video or an image)

(Listing 4.1). We show that using this simple task formulation over behavioral

data collected in the wild, results in performance improvement over a hierarchy

of tasks. We get improvements over the base LLaMA-Vid across 46 tasks over

26 benchmark datasets in both zero-shot and fine-tuned settings. We show this

over low-level content understanding tasks like object and activity recognition and

also over high-level tasks like topic and emotion detection. Through this, we pro-

pose a scalable approach to increase the content understanding abilities of VLMs,

requiring minimal cost and no architectural changes.

2) AdLLaVA: Disentangling the effect of content and behaviour: To

disentangle the effect of training LLaMA-Vid on additional image and video data

from the effect of training on behavior data, we train LLaMA-Vid on BLIFT’s

videos and images without including behavior. We call this model Ad-LLaVA. We

show that Ad-LLaVA shows equivalent performance as its base model LLaVA-Vid;

however, Behavior-LLaVA performs better than both Ad-LLaVA and LLaMA-Vid,

thus highlighting the importance of behavior data and instruction fine-tuning on

behavior data.

3) Perception vs Action:We also show an ablation of Behavior-LLaVA across

different kinds of behavior. We try out the perception behavior of saliency predic-

tion over images and five types of action-level behavior over images and videos.

We find that perception-level behavior does not result in significant performance

improvements; however, action-level behavior shows improvements across all the

tasks. We posit that one reason for this could be due to the scale for which action-

level data is available (Table 4.6). While perception behavior is mostly collected

in lab settings, action-level behavior data is diverse, can be collected in a scalable

manner automatically and cheaply.
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4.2.2 Methodology

In this section, we introduce our approach to train Behavior-LLaVA. Since no pub-

licly available corpus consists of behavior together with image and video content,

we first introduce our instruction fine-tuning dataset, “Behavior-LLaVA Instruc-

tion Fine-Tuning dataset” (BLIFT). Next, we introduce our methodology to train

Behavior-LLaVA. Finally, we report the results of testing Behavior-LLaVA’s ca-

pabilities on a hierarchy of tasks. The tasks cover low-level media understanding

tasks like object and activity detection, high-level media understanding tasks like

emotion, topic, and persuasion strategy classification.

4.2.2.1 BLIFT Dataset

Given the abundance of media and behavioral data and its accessibility, our data

collection relies on two primary sources: Reddit and YouTube. These platforms

share similarities in terms of hosting media content (images and videos) and pro-

viding user engagement metrics in the form of Reddit upvotes and comments, and

YouTube likes, views, comments, and replay graphs. Here, we delineate the pro-

cess involved in constructing the instruction fine-tuning dataset, which we term

as the Behavior-LLaVA Instruction Fine-Tuning (BLIFT) dataset.

4.2.2.1.1 Data from Reddit To collect a substantial corpus of diverse images

and videos, we targeted at two specific subreddits, namely r/pics and r/videos.

Established over 15 years ago, these subreddits had a user base exceeding 20

million during the data collection period, with an average of over 5,000 online users

concurrently. Notably, due to stringent content moderation guidelines (Reddit,

Inc., 2024; red, 2024a,b,c) and the exclusive focus of these subreddits on media

content, they offer a rich variety of content devoid of thematic biases. Our data

collection spans until January 2022, during which the activity on these subreddits

witnessed a notable decline following several policy adjustments and user protests

(Hern, 2023; Economist, 2023).

To ensure data quality and relevance, we executed a series of filtering steps

on the posts and comments from these subreddits. Initially, we excluded posts
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predating February 2015 from r/pics, coinciding with the implementation of a rule

requiring images without digital/overlay text (red, 2024a,b). This filtering step

resulted in the exclusion of 3.1 million images and 2 million videos. Subsequently,

considering the sustained popularity of both subreddits, with rankings within the

top 20 since 2017 and consistent membership exceeding 20 million, we confined

our dataset to posts from January 2018 onwards. This selection process yielded

1.4 million images and 1.1 million videos.

Further refinement of the dataset involved removing posts and comments

marked as NSFW, BOT-generated, or [deleted], along with eliminating dupli-

cate images and videos. This curation step reduced the dataset to 876,000 images

and 983,000 videos. To address redundancy in comments, we excluded those com-

prising fewer than three words and employed TF-IDF-based deduplication with a

similarity threshold of 0.6, determined through manual observations.

Following these steps, posts with fewer than two comments were filtered out,

resulting in a dataset comprising 631,000 images and 397,000 videos. Addition-

ally, videos exceeding a duration of 500 seconds were omitted, leaving 221,000

videos for analysis. Notably, images not directly hosted on Reddit were excluded

due to scraping and copyright limitations. Similarly, for r/videos, only videos

hosted on YouTube were considered. It is pertinent to mention that approximately

51% of YouTube videos collected during this period were either made private/un-

listed or removed, resulting in 400,000 images and 80,000 videos, accompanied

by 1.5 million and 312,000 comments, respectively. These comprehensive filtering

steps ensured the construction of a diverse and relevant dataset for fine-tuning

instruction-based models.

4.2.2.1.2 Data from YouTube Our data collection from YouTube begins

with querying Wikidata (Vrandečić and Krötzsch, 2014) for YouTube IDs to com-

pile a list of channels. Wikidata, derived from Wikipedia, provides a curated

selection of renowned channels, automatically filtering out noisy videos commonly

found in datasets collected from diverse sources like user-generated videos. This

initial step yielded a dataset of 2.2 million videos spanning the period from 2018

to 2023, sourced from approximately 6,000 channels collected from Wikidata.
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Listing 4.1: Behavior Instruction fine-tuning template for the video: https:
//www.youtube.com/watch?v=BKPQkjRF4yY

<SYSTEM>You are an AI visual assistant. You are given a detailed description of a media,
followed by the actual media. Answer all questions as if you are seeing the media.</
SYSTEM>

<USER>
The video advertisement is titled "Gatorade | Make Your Own Footsteps with Suni Lee" for the

brand Gatorade. The audio in the ad says "[ASR HERE ...]". Analyze this video deeply,
then write scene by scene description of the video and answer the following questions

. What percentage of viewers would like this video, and what would be the top-5
popular comments on this video? What would the replay graph values for each scene be?

<video>...</video>
</USER>

<ASSISTANT>
The scene-by-scene descriptions are:

Scene 1: The scene shows a woman looking off into the distance with an orange line going
around the outside of the screen. The foreground colors of the scene are black, mud
green, gray, dark gray, and the background colors are dark brown, black, dark gray.
The dominant tone of the scene is neutral. This scene is categorized by the tags:
cosmetic, eyebrow, face, girl, ponytail, stand, string, woman.

Scene 2: The scene shows a woman balancing on a skateboard in a yard. The foreground colors
of the scene are black, mud green, dark gray, olive, and the background colors are
black, dark gray, gray, dark brown.The dominant tone of the scene is neutral. This
scene is categorized by the tags: athletic, balance, beam, car, girl, house exterior,
hurdle, jog, legging, plank, rail, seesaw, woman, yard.

Scene 3: The scene shows a girl jumping over a wooden ramp in the backyard. The foreground
colors of the scene are black, dark gray, gray, dark blue, and the background colors
are dark brown, dark blue, purple, dark pink, brown.

...

>>> BEHAVIOR <<<

The video will be liked by 2.0% of viewers, and the popular comments could be:
1. "Wow. Love it. She's such an inspiration to the next generation as well as everyone."
2. "Inspiring and great story behind this commercial. Builds meaning and purpose in the

hearts and minds of youth. It's been a while since good, meaningful ads have been made
."

3. "She's an inspiration to the world. Thanks to her,my niece is learning gymnastics.
Hopefully someday, she is an inspiration to others as Suni is an to everyone"

4. "Chills watching this. Such an inspiration."
5. "Yooooo, this is straight up!"

The replay values for each scene would be:
Scene 1: 0.06
Scene 2: 0.23
Scene 3: 0.38
...
</ASSISTANT>

Figure 4.10: Behavior Instruction fine-tuning template for the video: https://ww
w.youtube.com/watch?v=BKPQkjRF4yY

To refine the dataset, manual filtering was employed to exclude certain cate-

gories deemed less relevant for our purposes. These categories included music and

songs, gaming content, non-English videos, sports commentary, anime, memes,

channels with disabled comments sections, and news-related content. Further-

more, and only videos with a substantial viewership, defined as greater than 10,000

views, were retained. We observed that these videos usually have less noisy com-

ments and likes.

Subsequently, the top comments from each video, as ordered by YouTube (i.e.,

the most liked comments), were selected for inclusion in the dataset. To address

redundancy in comments, a TF-IDF filter was applied with a threshold of 0.7,

which proved effective in removing duplicate comments prevalent in YouTube data.

Comments were further filtered to include only those with a minimum of four

words and a maximum of 100 words, ensuring a balance between relevance and
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Figure 4.11: Percentage performance improvement over an untrained LLaMA-Vid
model, compared across various sampling ratios at different check-
points. The 1:1 sampling ratio shows the best empirical performance.
Performance is averaged over 0-shot accuracy improvements on six
tasks with 250 samples each from the evaluation set. These tasks
include image emotion recognition, video emotion recognition, and
persuasion strategy classification, MSRVTT, HVU and MSVD-QA.
The figure also shows the benefit of our data filtering process. While
training on unfiltered BLIFT also improves the result over baseline
performance of Llama-Vid but data filtering adds more improvement
on top of it.

conciseness. Additionally, to mitigate the presence of NSFW content, a vocabulary

specific to NSFW terms (ldn) was employed to filter out inappropriate posts. On

average, we finally get 3.1 comments per video, providing a substantial corpus

of user-generated content for analysis. After applying these filtering steps, the

dataset was reduced to 250,000 videos, ensuring a curated and relevant collection

for subsequent analysis and model training.

4.2.2.2 Instruction Fine-Tuning LLaMA-Vid

After collecting Reddit and YouTube media and user behavior, we formulate in-

struction fine-tuning tasks for training LLaMA-Vid. In the training instruction,

given the media content and automatic speech recognition if available, we ask the
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model to simulate the scene-by-scene description and user likes/views and top-5

comments. This instruction training template is given in Listing 4.1. To generate

the instruction data, first, frames are sampled using the 30-degree rule (SI et al.,

2025; Arev et al., 2014; Friedman and Feldman, 2004), then the scene-by-scene de-

scription are obtained by concatenating automatically generated captions and tags

from LLaVA-13B (Liu et al., 2023a), colors and tone through Qin et al. (2020b).

This instruction format keeps the instructions similar to the instruction format for

other VLMs like LLaVA (Liu et al., 2023a), MiniGPT-4 (Zhu et al., 2023), BLIP

(Li et al., 2022), LLaMA-Vid (Li et al., 2023d), etc., while additionally teaching

the model to learn behavior. We keep the instruction fine-tuning template similar

for both YouTube and Reddit. The complete instruction is given in Listing 4.1.

We start with the trained LLaMA-Vid model. The LLaMA-Vid model uses

two tokens to represent each frame in the video, which they call content and con-

text tokens. While the context token encodes the overall image context based on

user input, the content token encapsulates visual cues in each frame. For learn-

ing context tokens, the model uses attention queries that interact with previously

generated image features in the designed attention module. To generate content

tokens, the image features are average pooled. This dual-token strategy signif-

icantly reduces the number of tokens needed to represent videos, thus enabling

the model to scale to longer (hour-long) videos. To better support hour-long

videos, LLaMA-Vid was trained on a 9k movie-level conversation instruction set

containing plot reasoning and detail understanding questions.

Taking the base LLaMA-Vid model, we finetune it further on behavioral data.

In our experiments we observe that the sampling ratio of BLIFT and IFT datasets

is an important hyperparameter. We track 4 zero-shot metrics, likes/views, com-

ments perplexity, and empirically find the best results with 1:1 ratio for 2.2 epochs

(see Fig 4.11 and Table 4.7). For the best checkpoint, the perplexity on comments

reduces from 6.22 to 3.05, and the R2 on likes/views goes from -5.1 to 0.45

We combine 730k instruction pairs from BLIFT with the original instruction

tuning dataset consisting of 40K text conversations from ShareGPT, 625K single

or multi-turn visual QA pairs, and 98K video QA pairs; all the modules except

the Visual Encoder are kept frozen. We ablate on multiple sampling ratios from
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Task MSRVTT-QA CAER Emoset Comments likes/views
Base 58.9 75.6 45.23 6.22 -0.1
Salicon [Region] 55.6 75.8 47.25 6.25 -0.07
Salicon [Object] 57.9 76.4 48.0 6.12 0.05
BLIFT[Likes/Views] 58.2 76.2 47.12 6.15 0.38
BLIFT[Titles] 58.4 78.1 48.12 5.09 0.13
BLIFT[Comments] 59.0 79.1 49.58 3.02 0.19
BLIFT 59.2 79.3 50.38 3.05 0.40

Table 4.6: Ablation on using comments and/or perception signals from Salicon

BLIFT. We train the LLaMA-Vid checkpoints with their original SFT mix along

with BLIFT. We ablate different sampling ratios and found 1:1 to be empirically

performing the best. We train the model for 2.2 epochs, keeping track of the 0-

shot evaluation metrics and perplexity on comments in the eval set Fig 4.11 and

Table 4.7 show the ablations on different sampling ratios and epochs of training.

For the best checkpoint, the perplexity on comments reduces from 6.22 to 3.05,

and the R2 on likes/views goes from -5.1 to 0.45.

AdLLaVA to show the impact of behavior data: To disentangle the effect

of training on additional data samples from the effect of training on behavioral

data, we train LLaMA-Vid on BLIFT with the video and image verbalization and

do not include receiver behavior. Then, the overall instruction template consists of

scene-by-scene automatically generated verbalization similar to Listing 4.1 without

the likes and comment simulation. We call the LLaMA-Vid fine-tuned on this

data, Ad-LLaVA. We compare Behavior-LLaVA with Ad-LLaVA and LLaMA-Vid

along with other state-of-the-art literature benchmarks on various tasks (Tables

4.8-4.13).

Impact of filtering steps on performance: We use various filtering steps

in our data pipeline, including NSFW filters, time filters, bot filters, and gaming

and news video filters. To quantify the impact of our filtering steps on the final

performance, we compare the performance from training on unfiltered data with

filtered data (Figure 4.11). The figure shows the benefit of our data filtering

process. While training on unfiltered BLIFT also improves the result over baseline

performance of Llama-Vid but data filtering adds more improvement on top of it

Ablation with perceptual behavior: As an ablation experiment, we also

try teaching the Behavior-LLaVA perceptual signals. For this, we take the largest
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Sampling Ratio Epoch Likes/Views R2 Comments Perplexity Performance
Base-Model 0 -0.1 6.22 0

1:1

0.5 0.11 4.71 5.49
1 0.22 3.95 8.23
1.25 0.33 3.19 10.97
1.5 0.35 3.13 11.79
2 0.38 3.08 12.31
2.2 0.4 3.05 12.57

1:2
0.5 0.14 4.33 3.04
1.05 0.28 3.66 7.08
1.45 0.42 2.99 8.12

1:10

0.5 0.15 3.43 1.38
0.8 0.31 2.78 3.44
1 0.38 2.46 4.48
1.2 0.46 2.13 5.51

2:1
0.5 0.1 5.3 3.52
1 0.21 4.6 7.45
1.5 0.31 3.9 9.13

Table 4.7: Ablation on different sampling ratios and epochs of training. Sampling
ratio is the ratio of behaviour data to multimodal instruct data. Per-
formance is the average increase in 0-shot accuracy on 6 tasks with
250 samples each from the eval set. These tasks include image emotion
recognition, video emotion recognition, persuasion strategy classifica-
tion, MSRVTT, HVU and MSVD-QA

perception signal dataset in the literature - Salicon10k (Jiang et al., 2015). It

consists of 10,000 MS COCO images (Chen et al., 2015) with free-viewing eye

gaze data collected through a novel mouse-based interface. The dataset has been

widely used in many studies. We formulate two tasks using this data, (1) Salicon

[Object]: estimating the saliency over the objects in the image and (2) Salicon

[Region]: estimating the saliency over a region, where the regions tiles formed

by breaking the image into a 3x3 grid. For both tasks we try to model two

objectives, ranking and predicting, we found ranking to be much more effective.

The instruction are given in Listings 4.2 and 4.3.
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Listing 4.2: Perceptual Signal Instruction fine-tuning
template for the image: http://farm6.
staticflickr.com/5106/5670500150_e
035dd2d30_z.jpg

<SYSTEM>You are an AI visual assistant. Answer all questions as you
are seeing the media<SYSTEM><USER>The objects in this image
in no particular order are car, dog, frisbee. Give me the order of
saliency of these objects, start with the most salient object and end
with the least salient object, each in a separate line. Give me the
objects only and nothing else.

<image>
<ASSISTANT>
dog
frisbee
car
<ASSISTANT>

Listing 4.3: Perceptual Signal Instruction fine-tuning
template for the image: http://farm6.
staticflickr.com/5106/5670500150_e
035dd2d30_z.jpg

<SYSTEM>You are an AI visual assistant. Answer all questions as you
are seeing the media<SYSTEM><USER>Assume the given image
is broken into a 3X3 grid the regions or tiles being named ”upper−
left” ”upper−center”, ”upper−right”, ”middle−left”, ”middle−center
”, ”middle−right”, ”bottom−left”, ”bottom−center”, ”bottom−right
”. Rank these regions or tiles based on their saliency, give me the line
separated ranking of all regions in decreasing order.

<ASSISTANT>
middle−right
bottom−center
bottom−right
upper−center
upper−right
middle−center
upper−left
middle−left
bottom−left
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Model scene way_speaking relationship like_ratio view_count director genre writer year
Video4096-GPT-3.5 generated story
+ Flan-t5-xxl 60.2 39.07 64.1 0.061 12.84 69.9 58.1 52.4 75.6

Video4096-GPT-3.5 generated story
+ GPT-3.5 classifier 54.54 32.95 68.42 0.031 12.69 75.26 50.84 32.16 75.96

LLaMA-Vid + GPT-3.5 Generated Story 58.12 35.5 60.6 0.314 10.34 65.34 49.77 34.23 72.12
Ad-LLaVA 59.05 37.07 61.2 0.319 10.37 66.84 55.13 35.33 77.34
Behavior LLaVA + GPT-3.5 Generated Story 66.43 41.03 64.21 0.17 5.12 71.12 63.45 39.4 79.3
Improvement of Behavior LLaVA
over LLaMA-Vid 10.48% 15.58% 9.62% 45.86% 50.48% 8.85% 27.49% 15.1% 9.96%

Table 4.8: Comparison of various models on the Long Video Understanding benchmark (Wu and Krahenbuhl, 2021) consisting of 9 VQA
tasks. We see that Behavior-LLaVA improves on LLaMA-Vid on 9/9 tasks with an average improvement of 21.49%. Further, it
outperforms the state-of-the-art in 5/9 tasks.
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4.2.3 Results and Discussion

In the experimental results, we aim to showcase the diverse and emergent capa-

bilities of our Behavior-LLaVA model through quantitative numbers on various

tasks and qualitative examples. These abilities include generating detailed image

and video descriptions, emotion and sentiment analysis, question answering, video

understanding tasks like scene and action detection. Additionally, we present the

ability of Behavior-LLaVA to transfer learn on other behaviors like memorability

of a video - both short-term and long-term.

4.2.3.1 Evaluation

To test the effectiveness of Behavior-LLaVA, we conduct experiments involving 46

distinct tasks across 26 benchmark datasets. The diversity of tasks and datasets

allows us to evaluate the performance and capabilities of Behavior-LLaVA thor-

oughly. Each of them is covered briefly next:

1. Visual Question Answering (VQA): We evaluate the performance of
visual question answering on the following benchmark datasets:
• The Long-Video Understanding (LVU) benchmark by Wu and Krahenbuhl

(2021) comprises nine distinct tasks aimed at assessing long video comprehen-
sion, incorporating over 1000 hours of video content. These tasks encompass
diverse aspects such as content understanding (including relationship, speak-
ing style, scene/place), prediction of user engagement (YouTube like ratio,
YouTube popularity), and movie metadata (director, genre, writer, movie
release year).

• The Holistic Video Understanding (HVU) dataset by Diba et al. (2020) stands
as the largest dataset for long video comprehension, comprising 572,000 sam-
ples. Encompassing a broad spectrum of semantic elements within videos,
HVU tasks involve the classification of scenes, objects, actions, events, at-
tributes, and concepts. Performance evaluation on HVU tasks is conducted
using the mean average precision (mAP) metric on the validation set.

• We also use MSVD-QA, MSRVTT-QA (Chen and Dolan, 2011; Xu et al.,
2016b), and ActivityNet-QA (Caba Heilbron et al., 2015) datasets. Their
description is given in Appendix 4.2.6.2.

2. Video and Image Understanding Benchmarks: We use a wide va-
riety of tasks to evaluate video and image understanding: topic, emotion, and
persuasion strategy classification, action and reason retrieval and generation, and
emotions. We briefly introduce the benchmarks:
• The advertisements dataset by Hussain et al. (2017) contains 3,477 video

advertisements and the corresponding annotations for emotion and topic tags
and action-reason statements for each video. There are a total of 38 topics
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and 30 unique emotion tags per video. Further, we have 5 action-reason
statements for each video for the action-reason generation task.

• Persuasion strategy dataset (Bhattacharyya et al., 2023) is a dataset consist-
ing of 1002 video advertisements from popular brands and their persuasion
strategy labels like social identity, anchoring and comparison, reciprocity,
foot-in-the-door, etc.

• For emotion analysis, we use VideoEmotion-8 (Asur and Huberman, 2010),
Ekman-6 (Xu et al., 2016a), CAER (Lee et al., 2019), IAPSa (Mikels et al.,
2005), Emotion6 (Peng et al., 2015), EmoSet (Yang et al., 2023), and Ab-
stract (Machajdik and Hanbury, 2010) datasets. A brief description for each
of them is given in Appendix 4.2.6.2.

3. Image Dense Captioning: Literature image captioning datasets such as
MS-COCO (Chen et al., 2015) reduce the inherently rich information and fine-
grained semantics to simplistic captions, with very brief statements focussing only
on salient objects. Behavior data such as user comments help a model learn much
more information such as object and material properties, world knowledge, emo-
tion, character understanding, spatial relationships, aesthetics, etc. (see Fig. 4.7),
enhancing the model’s captioning capability. Therefore, we design a caption-
ing task to test this capability and compare it with respect to LLaMA-Vid and
LLaVA-34B (a 2.5x larger model). Since we do not have ground truth for this task,
following the LLM-as-a-judge paradigm, we use GPT-4V as the judge for all the
models. GPT-4V is asked to evaluate the dense captions on three metrics: Cor-
rectness (Listing 4.4) evaluating the factuality and model hallucinations, Detail
(Listing 4.5) evaluating the number and depth of details captured by the gener-
ated captions, and Quality (Listing 4.6) measuring the subjective quality of the
concepts chosen to be highlighted by the captioning model and the arrangement,
coherence, and the linking of various concepts.

4. Image and Video Memorability Simulation: Behavior-LLaVA is trained
on behavior along with the media. To check if training on behavior helps in solving
other behavior tasks (Khandelwal et al., 2024), we test it over image and video
memorability simulation. For this, we select seven benchmark datasets covering
long-term and short-term memorability over images and videos: LaMem (Khosla
et al., 2015), SUN (Isola et al., 2011), and MemCat (Goetschalckx and Wagemans,
2019) for images and Memento10k(Newman et al., 2020), VideoMem (Cohendet
et al., 2019), MediaEval (Kiziltepe et al., 2021a), and LAMBDA (SI et al., 2025)
for videos. We briefly cover each of them in Appendix 4.2.6.2.

5. Modalities other than videos and images: Behavior-LLaVA, built on
top of LLaMA-Vid and fine-tuned using BLIFT, is pretrained and fine-tuned on
image and video datasets. To test if behavior data can improve the results on
other modalities as well, we test Behavior-LLaVA’s performance on two tasks
across audio and text modalities (Table 4.10). For audio, we evaluate on the
audio summarization task (Han et al., 2023) and for text, we evaluate on the
IMDB sentiment benchmark (Maas et al., 2011).

For Tables 4.8, 4.17, and 4.11, we follow the evaluation protocol of Video-4096

(Bhattacharyya et al., 2023), for Table 4.16 we follow the evaluation protocol of
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Training Dataset Video Emotion-8 CAER Ekman-6
Random Random 12.5 14.28 16.67
0-Shot LLaMA-Vid 29.7 27.2 37.33

Behavior-LLaVA 41.35 51.0 49.33
Ad-LLaVA 29.8 27.3 37.66

Improvement of Behavior-LLaVA over LLaMA-Vid 39.22% 84.19% 32.14%
Finetuned Zhao et al. (2020) 54.5 78.3 55.3

Zhang et al. (2023d) 57.3 80.1 58.2
eMOTIONS (Wu et al., 2023a) - - 53.12
Arevalo et al. (2017) 53.7 77.3 54.2
Qiu et al. (2020) 53.3 - 57.3
Xu et al. (2016a) 52.6 77.9 55.6
LLaMA-Vid 53.8 75.6 57.9
Ad-LLaVA 54.1 76.1 57.8
Behavior-LLaVA 56.9 79.3 58.4

Improvement of Behavior-LLaVA over LLaMA-Vid 5.76% 3.57% 0.86%

Table 4.9: Comparison of various models on three video emotion understanding
benchmarks (Video Emotion8 (Jiang et al., 2014), CAER (Lee et al.,
2019), Ekman-6 (Xu et al., 2016a)). The main goal of comparing on
these benchmarks is to demonstrate Behavior-LLaVA’s understanding
of complex tasks like video emotions of long-form videos. We see that
Behavior-LLaVA improves on LLaMA-Vid on 3/3 benchmarks with an
average improvement score of 51.85% in zero-shot and 3.39% in fine-
tuned settings. Further, it outperforms the current state-of-the-art on
3/3 benchmarks in zero-shot and 1/3 in fine-tuned settings.

Model Audio Summarization (3 Shot) IMDb Sentiment
BLEU ROUGE METEOR 0-shot 1-shot

Behaviour-LLaVA 19.0 25.1 39.3 84.1 90.2
LLaMA-VID 15.1 18.3 30.7 80.3 87.9
VALOR (Chen et al., 2023) 6.6 10.0 23.9 - -
Improvement of Behavior-LLaVA
over LLaMA-Vid 25% 37% 28.01% 4.73% 2.61%

Table 4.10: Evaluation on audio and text modalities. We evaluate on the audio
summarization benchmark (Han et al., 2023) for audio and IMDB
sentiment benchmark for text (Maas et al., 2011).

LLaVA and LLaMA-VID. For Tables 4.9, 4.15, and 4.13, for 0-shot evaluation

results, we use the logits of the next token from the given task vocabulary. For

Table 4.13, we use the evaluation protocol by (SI et al., 2025).
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Training Model Topic Sentiment Persuasion Action ReasonClubbed All labels
Random Random 2.63 3.37 14.3 8.37 3.34 3.33
Zero-shot VideoChat (Li et al., 2023c) 9.07 3.09 5.1 10.28 - -

Video4096 - GPT-3.5 Generated Story + GPT-3.5 Classifier 51.6 11.68 79.69 35.02 66.27 59.59
LCBM (Khandelwal et al., 2024) 42.17 7.08 58.83 32.83 39.55 27.91
LLaMA-VID w/ only video 10.11 3.42 5.75 12.32 29.61 24.11
LLaMA-VID w/ video + GPT-3.5 Story 42.72 11.05 64.02 32.07 37.76 42.33
Behavior-LLaVA w/ only video 22.65 11.13 60.04 13.39 42.66 33.33
Behavior-LLaVA w/ video + verbalization 46.34 11.7 64.13 33.33 52.06 52.03
Ad-LLaVA w/ video + GPT-3.5 story 51.16 11.33 68.03 33.11 43.26 51.45
Behavior-LLaVA w/ video + GPT-3.5 story 60.09 12.84 79.94 36.12 67.10 79.18

Improvement of Behavior-LLaVA over LLaMA-Vid 40.66% 16.2% 24.86% 12.62% 77.7% 87.05%
Finetuned Video4096- Generated Story + Roberta Classifier 71.3 33.02 84.20 64.67 42.96 39.09

LLaMA-VID w/ video + verbalization 59.13 32.11 79.15 50.93 50.32 30.13
LLaMA-VID w/ video + GPT-3.5 Story 63.11 35.01 84.15 55.01 57.11 45.73
Behavior-LLaVA w/ only video 58.03 22.72 84.41 26.23 59.33 51.45
Behavior-LLaVA w/ video + verbalization 68.32 33.92 85.93 64.72 70.89 75.34
Ad-LLaVA w/ video + GPT-3.5 story 66.34 36.24 84.09 58.31 68.15 78.15
Behavior-LLaVA w/ video + GPT-3.5 story 71.2 39.55 86.17 65.03 80.44 81.67

Improvement of Behavior-LLaVA over LLaMA-Vid 12.82% 12.97% 2.4% 18.21% 40.85% 78.59%

Table 4.11: Comparison of various models on two video understanding benchmarks (Hussain et al., 2017; Kumar et al., 2023b) consisting
of 5 tasks related to video advertisements understanding. The main goal of comparing on these benchmarks is to demonstrate
Behavior-LLaVA’s understanding of complex videos. We see that Behavior-LLaVA improves on LLaMA-Vid on 5/5 tasks with
an average improvement score of 43.18% in zero-shot and 27.64% in fine-tuned settings. Further, it outperforms the current
state-of-the-art on 3/5 tasks in zero-shot and 5/5 in fine-tuned settings. Full results are presented in the Table 4.12.
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Training Model Topic Sentiment Persuasion Action ReasonClubbed All labels
Random Random 2.63 3.37 14.3 8.37 3.34 3.33
Zero-shot VideoChat (Li et al., 2023c) 9.07 3.09 5.1 10.28 - -

Video4096 - GPT-3.5 Generated Story + GPT-3.5 Classifier (Bhattacharyya et al., 2023) 51.6 11.68 79.69 35.02 66.27 59.59
Video4096 - GPT-3.5 Generated Story + Flan-t5-xxl Classifier (Bhattacharyya et al., 2023) 60.5 10.8 79.10 33.41 79.22 81.72
Video4096 - GPT-3.5 Generated Story + Vicuna Classifier (Bhattacharyya et al., 2023) 22.92 10.8 67.35 29.6 21.39 20.89
Video4096 - Vicuna Generated Story + GPT-3.5 Classifier (Bhattacharyya et al., 2023) 46.7 5.9 80.33 27.54 61.88 55.44
Video4096 - Vicuna Generated Story + Flan-t5-xxl Classifier (Bhattacharyya et al., 2023) 57.38 9.8 76.60 30.11 77.38 80.66
Video4096 - Vicuna Generated Story + Vicuna Classifier (Bhattacharyya et al., 2023) 11.75 10.5 68.13 26.59 20.72 21.00
LCBM (Khandelwal et al., 2024) 42.17 7.08 58.83 32.83 39.55 27.91
LLaMA-VID w/ only video 10.11 3.42 5.75 12.32 29.61 24.11
LLaMA-VID w/ video + GPT-3.5 Story 42.72 11.05 64.02 32.07 37.76 42.33
Behavior-LLaVA w/ only video 22.65 11.13 60.04 13.39 42.66 33.33
Behavior-LLaVA w/ video + verbalization 46.34 11.7 64.13 33.33 52.06 52.03
Ad-LLaVA w/ video + GPT-3.5 story 51.16 11.33 68.03 33.11 43.26 51.45
Behavior-LLaVA w/ video + GPT-3.5 story 60.09 12.84 79.94 36.12 67.10 79.18

Improvement of Behavior-LLaVA over LLaMA-Vid 40.66% 16.2% 24.86% 12.62% 77.7% 87.05%
Finetuned VideoMAE (Tong et al., 2022) 24.72 29.72 85.55 11.17 - -

Hussain et al. (2017) 35.1 32.8 - - 48.45 -
Intern-Video (Wang et al., 2022) 57.47 36.08 86.59 5.47 6.8 -
Video4096- Generated Story + Roberta Classifier (Bhattacharyya et al., 2023) 71.3 33.02 84.20 64.67 42.96 39.09
LLaMA-VID w/ video + verbalization 59.13 32.11 79.15 50.93 50.32 30.13
LLaMA-VID w/ video + GPT-3.5 Story 63.11 35.01 84.15 55.01 57.11 45.73
Behavior-LLaVA w/ only video 58.03 22.72 84.41 26.23 59.33 51.45
Behavior-LLaVA w/ video + verbalization 68.32 33.92 85.93 64.72 70.89 75.34
Ad-LLaVA w/ video + GPT-3.5 story 66.34 36.24 84.09 58.31 68.15 78.15
Behavior-LLaVA w/ video + GPT-3.5 story 71.2 39.55 86.17 65.03 80.44 81.67

Improvement of Behavior-LLaVA over LLaMA-Vid 12.82% 12.97% 2.4% 18.21% 40.85% 78.59%

Table 4.12: Comparison of various models on two video understanding benchmarks (Hussain et al., 2017; Kumar et al., 2023b) consisting
of 5 tasks related to video advertisements understanding. The main goal of comparing on these benchmarks is to demonstrate
Behavior-LLaVA’s understanding of complex videos. We see that Behavior-LLaVA improves on LLaMA-Vid on 5/5 tasks with
an average improvement score of 43.18% in zero-shot and 27.64% in fine-tuned settings. Further, it outperforms the current
state-of-the-art on 3/5 tasks in zero-shot and 5/5 in fine-tuned settings.

169



Training Models Image Datasets Video Datasets
Lamem Memcat SUN Memento10k VideoMem MediaEval LAMBDA

Human Consistency 0.68 0.78 0.75 0.73 0.61 - 0.61
Finetuned 10-shot in-context learning GPT-3.5 0.29 0.18 0.15 0.07 0.06 0.06 0.06

ViTMem (Hagen and Espeseth, 2023) 0.71 0.65 0.63 0.56 0.51 - 0.08
Henry trained with 25% data (SI et al., 2025) 0.56 0.64 0.59 0.62 0.49 0.32 0.28
Henry trained with 50% data (SI et al., 2025) 0.65 0.68 0.67 0.69 0.55 0.44 0.40
Henry trained with 75% data (SI et al., 2025) 0.71 0.75 0.73 0.74 0.62 0.49 0.47
Henry trained on all (combined) datasets (SI et al., 2025) 0.72 0.79 0.76 0.72 0.60 0.48 0.52
Ad-LLaVA trained with 50% data 0.67 0.65 0.61 0.69 0.56 0.43 0.47
Behaviour LLaVA trained with 25% data 0.67 0.72 0.69 0.68 0.53 0.44 0.50
Behaviour LLaVA trained with 50% data 0.72 0.77 0.73 0.71 0.59 0.46 0.51
Behaviour LLaVA trained with 75% data 0.73 0.77 0.74 0.70 0.60 0.47 0.50
Behavior-LLaVA trained on all datasets 0.73 0.78 0.74 0.71 0.60 0.47 0.52

Improvement of Behavior-LLaVA
over LLaMA-Vid (25% data) 19.64% 12.5% 16.95% 9.68% 8.16% 37.5% 78.57%

Improvement of Behavior-LLaVA
over LLaMA-Vid (50% data) 10.77% 13.26% 8.96% 2.90% 7.27% 4.54% 27.5%

0-shot LLaMA-Vid 0.13 0.11 0.05 0.03 0.05 0.02 0.05
Ad-LLaVA 0.14 0.13 0.06 0.06 0.07 0.04 0.13
Behavior-LLaVA 0.21 0.17 0.13 0.12 0.08 0.07 0.16

Improvement of Behavior-LLaVA
over LLaMA-Vid 61.5% 54.5% 160% 300% 160% 350% 219%

Table 4.13: Comparison of various models on seven video and image memorability benchmarks (Memento10k (Newman et al., 2020),
VideoMem (Cohendet et al., 2019), LaMem (Khosla et al., 2015), SUN (Isola et al., 2011), MemCat (Goetschalckx and Wage-
mans, 2019), MediaEval (Kiziltepe et al., 2021a), LAMBDA (SI et al., 2025)). The main goal of comparing on these benchmarks
is to demonstrate Behavior-LLaVA’s understanding of complex and high-level tasks like memorability simulation. We see that
Behavior-LLaVA improves on LLaMA-Vid on 7/7 benchmarks with an average improvement score of 186.4% in zero-shot and 39%
in fine-tuned settings after seeing 25% train data. Further, it performs similarly to the current state-of-the-art on 7/7 benchmarks
in the fine-tuned settings while still seeing only 25% data.
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Model Correctness Detail Quality Average
GPT4-V 8.4 8.5 8.4 8.43
LLaVA-1.6 (34B) 8.1 8.2 7.4 7.9
LLaMA-Vid (13B) 7.4 7.6 7.2 7.4
Ad-LLaVA (13B) 7.5 7.8 7.3 7.53
Behavior-LLaVA (13B) 7.3 8.1 7.9 7.76
Improvement of Behavior-LLaVA
over LLaMA-Vid -1.3% 6.57% 9.72% 4.8%

Table 4.14: Comparison of various models on the image dense captioning task.
The main goal of this task is to demonstrate Behavior-LLaVA’s image
captioning ability. Despite not being explicitly trained on this task,
Behavior-LLaVA performs better than both Ad-LLaVA and LLaMA-
Vid on Detail and Quality aspects while losing marginally on correct-
ness. On the aspects of detail and quality, it even outperforms the
much larger model of LLaVA-1.6 (34B).

4.2.4 Discussion

Tables 4.8, 4.17, and 4.16 contain the results for the visual question answering

tasks, Tables 4.11, 4.9, 4.15 contain the results for video and image understanding

tasks, Tables 4.14 contains the results for dense-captioning, Table 4.13 contains

the results for image and video memorability benchmarks, and Table 4.10 contains

the results for the audio and text tasks. A common trend we observe across all the

results is that Behavior-LLaVA performs better than the base model LLaMA-Vid

and the finetuned model Ad-LLaVA on all tasks, especially in zero-shot settings.

In fact, Ad-LLaVA performs very similar to LLaMA-Vid itself. This shows that

BLIFT adds meaningful signals on an average rather than noise to the model.

Interestingly, the performance gains remain even after fine-tuning on the task

dataset (Tables 4.11, 4.9, 4.15).

The performance gains are relatively smaller for low-level tasks of action and

object recognition (Tables 4.17, and 4.16), but much higher for the more high-level

tasks of emotion understanding, sentiment analysis, persuasion strategy classifica-

tion, and memorability simulation, longform-video understanding and other sub-

tasks of Table 4.17. This indicates that receiver behavior has richer signals for

higher-level tasks, infact fine-tuned Behaviour-LLaVA models outperform GPT4-

V on image emotion recognition. The gains are observed across both image and

video benchmarks. We also observe that classification using a story generated

by GPT-3.5 (following Bhattacharyya et al. (2023)) results in better performance
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Training Models IAPSa-8 Abstract Emotion6 Emoset
Random Random 12.5 12.5 16.67 12.5
0-shot GPT4-V 83.33 71.12 65.47 79.16

LLaMA-Vid 43.41 43.24 40.37 45.23
Ad-LLaVA 43.22 43.01 43.21 44.38
Behavior-LLaVA 57.97 64.21 49.71 50.38

Improvement of Behavior-LLaVA over LLaMA-Vid 33.54% 48.5% 23.14% 11.39%
Finetuned MIDAN (Xu et al., 2022b) 85.96 78.34 61.66 75.75

Stimuli-aware (Yang et al., 2021) - - 61.62 78.40
LLaMA-VID finetuned 84.93 71.23 62.87 80.31
Ad-LLaVA finetuned 85.13 71.16 62.66 79.88
Behavior-LLaVA finetuned 87.36 81.41 72.31 83.21

Improvement of Behavior-LLaVA over LLaMA-Vid 2.86% 14.29% 15.02% 3.61%

Table 4.15: Comparison of various models on four image emotion understanding
benchmarks (IAPSa-8 (Mikels et al., 2005) Abstract (Machajdik and
Hanbury, 2010), Emotion6 (Peng et al., 2015), Emoset (Yang et al.,
2023)). The main goal of comparing on these benchmarks is to demon-
strate Behavior-LLaVA’s understanding of complex tasks like image
emotions. We see that Behavior-LLaVA improves on LLaMA-Vid on
4/4 benchmarks with an average improvement score of 29.14% in zero-
shot and 8.95% in fine-tuned settings. Further, it outperforms the
current state-of-the-art on 4/4 benchmarks in the fine-tuned settings.

Method LLM MSVD-QA MSRVTT-QA ActivityNet-QA
Acc Score Acc Score Acc Score

FrozenBiLM (Yang et al., 2022) DeBERTa-V2 32.2 – 16.8 – 24.7 –
VideoLLaMA (Zhang et al., 2023a) Vicuna-7B 51.6 2.5 29.6 1.8 12.4 1.1
LLaMA-Adapter (Zhang et al., 2023b) LLaMA-7B 54.9 3.1 43.8 2.7 34.2 2.7
VideoChat (Li et al., 2023c) Vicuna-7B 56.3 2.8 45.0 2.5 26.5 2.2
Video-ChatGPT (Maaz et al., 2023) Vicuna-7B 64.9 3.3 49.3 2.8 35.2 2.7
BT-Adapter (Liu et al., 2023b) Vicuna-7B 67.5 3.7 57.0 3.2 45.7 3.2
LLaMA-VID Vicuna-7B 69.7 3.7 57.7 3.2 47.4 3.3
LLaMA-VID Vicuna-13B 70.0 3.7 58.9 3.3 47.5 3.3
Ad-LLaVA Vicuna-13B 70.0 3.7 59.0 3.3 47.4 3.3
Behaviour-LLaVA Vicuna-13B 70.1 3.7 59.2 3.4 47.5 3.3
Improvement of Behavior-LLaVA
over LLaMA-Vid 0.14% 0% 0.5% 3% 0% 0%

Table 4.16: Comparison of various models on three conventional video question
answering benchmarks consisting of question answers related to action
understanding. The main goal of comparing on this benchmark is to
show that Behavior-LLaVA does not perform worse on low-level under-
standing tasks like action recognition. We see that Behavior-LLaVA
marginally improves on LLaMA-Vid on 2/3 benchmarks. Further, it
performs equivalent to the state-of-the-art in 3/3 benchmarks.

than only using the video (Tables 4.8, 4.17, 4.11). To evaluate the generalizability

of behavior data across modalities, we extend our evaluation to audio summa-

rization and text sentiment analysis and observe improvements of 19.5% (Table

4.10).
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Model Scene Object Action Event Attribute Concept Overall
0-shot LLaMA-VID 47.25 65.26 78.12 28.03 42.33 50.03 51.83

Ad-LLaVA 49.10 65.35 77.45 31.45 43.33 50.70 52.91
Behavior-LLaVA 52.03 65.33 77.95 32.66 45.67 51.20 54.14

Improvement of Behavior-LLaVA
over LLaMA-Vid 10.12% 0.11% -0.22% 16.52% 7.89% 2.34% 4.46%

0-shot w/ story Video4096 - GPT-3.5 generated
story + Flan-t5-xxl classifier 59.66 98.89 98.96 38.42 67.76 86.99 75.12

Video4096 - GPT-3.5 generated
story + GPT-3.5 classifier 60.2 99.16 98.72 40.79 67.17 88.6 75.77

LLaMA-VID + Generated Story 60.3 99.92 99.01 39.33 66.66 87.33 75.425
Behavior-LLaVA +
GPT3.5 generated story 60.4 99.89 98.23 40.97 67.23 88.33 75.84

Improvement of Behavior-LLaVA
over LLaMA-Vid 0.16% -0.03% -0.78% 4.17% 0.85% 1.14% 0.55%

Table 4.17: Comparison of various models on the Holistic Video Understanding
benchmark (Diba et al., 2020) consisting of 7 VQA tasks. We see
that Behavior-LLaVA improves on LLaMA-Vid on 6/7 tasks with an
average improvement of 5.88%. Further, it performs equivalent to the
state-of-the-art in 6/7 tasks. State of the art is achieved by generating
a story and asking Behavior-LLaVA to answer questions based on the
generated story.

In this captivating painting, a majestic tree takes cen-
ter stage against a stunning backdrop. The sky above
is a poetic split between night and day—a deep, starry
blue on one side with a crescent moon, and a warm,
radiant blend of yellows and pinks on the other, sug-
gesting either a sunrise or sunset. The tree itself em-
bodies the essence of transition, with one side adorned
in lush green foliage and the other stripped bare, sym-
bolizing the timeless dance of seasons and life’s per-
petual transformations.
This artwork not only captures the eye but also speaks
to deeper truths. It invites us to contemplate the del-
icate balance between light and darkness, growth and
dormancy, woven into the fabric of existence. The
artist’s brushstrokes, rendered with a serene palette
and gentle abstraction, evoke a sense of tranquility
and introspection. This painting beautifully reminds
us to embrace the fleeting beauty of each passing mo-
ment, whether bathed in daylight or cloaked in the
quiet mystery of night.

Figure 4.12: Dense caption generated by Behavior-LLaVA for an artistic drawing
of a tree.
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The image features a pair of Nike Air Force 1 sneakers, which are
a classic and iconic design. The sneakers are positioned in the
center of the image, with the left shoe slightly in front of the right
one, giving a sense of depth. They are predominantly white with
green accents, including the Nike swoosh logo on the side and the
outsole. The laces are white, and the midsole appears to be a light
beige color.
The background is a plain, light color, which contrasts with the
sneakers and makes them stand out. Overlaid on the image is a
stylized text that reads ”JUST DO IT” in a cursive, flowing script.
The text is in a light green color that matches the accents on the
sneakers, creating a cohesive color scheme. Below the main text,
there is a smaller line of text that says ”New collection,” indicating
that these sneakers are part of a new line or series from Nike.
The overall style of the image is clean and modern, with a focus
on the product. The use of the ”JUST DO IT” slogan, which
is a well-known tagline for Nike, adds a layer of branding and
recognition to the image. The text is designed to be eye-catching
and to draw attention to the sneakers, which are the main subject
of the image. The composition is balanced, with the sneakers
centrally placed and the text evenly distributed around them.

Figure 4.13: Dense caption generated by Behavior-LLaVA for a Nike ad. The
red-colored text highlights the most important aspects of the video
captured by Behavior-LLaVA, demonstrating an understanding of
aesthetics, characters, world knowledge, emotion, and spatial rela-
tionships.

The composition of the image presents a compelling narra-
tive of a soldier immersed in a war-torn landscape. Positioned
amidst a backdrop of explosive chaos and dense foliage, the
soldier, adorned in traditional military gear, gazes directly at
the viewer with a resolute demeanor. The soldier’s face is cam-
ouflaged, blending seamlessly with the olive-green helmet—a
hallmark of battlefield attire.
Surrounding this central figure, a tableau of activity unfolds:
a tank looms in the background, its barrel skyward, suggest-
ing recent action. Other soldiers, alert and vigilant, navigate
the dense jungle terrain, underscoring the high stakes of the
conflict. The foliage, lush yet foreboding, heightens the pal-
pable tension of the scene.
Foregrounded by the silhouette of another soldier’s helmeted
head, the viewer is drawn into the heart of the action, evoking
a sense of shared experience amid the perils of warfare. The
realism of the depiction accentuates the emotional weight of
the moment, capturing the essence of human resilience amidst
the ravages of battle.
Overall, the image transcends mere representation, offering
a poignant reflection on the individual’s role in the broader
narrative of war—imbued with suspense, authenticity, and a
profound exploration of the human condition within conflict.

Figure 4.14: Dense caption generated by Behavior-LLaVA for a painting of a sol-
dier. The model captures many qualitative aspects that are usually
missed in common captioning tasks.
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The Volkswagen ad titled begins with a group of three women seated excitedly in a Volkswagen Jetta, the
driver sporting a wide smile as she grips the steering wheel. The voiceover sets a nostalgic tone, likening the
Jetta to unforgettable first experiences like a first kiss or hearing indie rock for the first time—a symbol of
newfound freedom and excitement.
As the scenes unfold, the camera captures the trio cruising down winding roads, their laughter blending
with the music and the wind tousling their hair. The atmosphere inside the car is one of camaraderie and
adventure, with the Jetta serving as the backdrop to their shared moments of joy and spontaneity.
Transitioning to a wider shot of the Jetta gliding along a scenic highway, surrounded by lush greenery, the
ad evokes a sense of exploration and the open road. The visuals seamlessly blend modern-day cruising with
vintage footage of classic Volkswagen vehicles, reflecting on the brand’s 75-year history in America, starting
with the beloved Beetle.
The ad concludes with the Volkswagen logo and the tagline ”An American Love Story”, encapsulating the
enduring relationship between Volkswagen and its drivers across generations. This phrase serves as a tribute
to Volkswagen’s 75-year history in America, beginning with the iconic Type 1 vehicles fondly known as ”The
Beetle” Through its nostalgic narrative and captivating visuals, the teaser promises viewers an immersive
journey into the essence of Volkswagen—a timeless icon that has been a part of countless cherished memories
on the American road.

Figure 4.15: Dense caption generated by Behavior-LLaVA for the video of a Volkswagen ad. The original video is posted at URL: https:
//www.youtube.com/watch?v=kyuGXPNr-T0. The red-colored text highlights the most important aspects of the video captured by
Behavior-LLaVA, demonstrating an understanding of aesthetics, characters, world knowledge, emotion, and spatial relationships.
More such examples are given in Figs. 4.12, 4.13, 4.14, and Figs. 4.16, 4.17 for images and videos respectively.
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In a heart-pounding and visually stunning trailer for Red Dead Redemption,
we are thrust into the gritty world of the American frontier. The trailer opens
with a voiceover, a chilling warning delivered with calm certainty: ”Listen to
me, we don’t want to kill any of you... But trust me, we will.”
Scenes flash by in quick succession, each more intense than the last. We see
a lone figure, silhouetted against a setting sun, riding a magnificent horse
through a sprawling, golden field. The rugged beauty of the landscape con-
trasts sharply with the impending sense of danger.
Cut to a dimly lit saloon where a group of hardened men sit around a table,
cards in hand, tension thick in the air. The voiceover continues, ”This whole
thing is pretty much done. We’re more ghosts than people.”
A flurry of action unfolds: a quick draw in a darkened room, bullets slicing
through the air with deadly precision. The voiceover reminisces, ”Good old
Dutch, my best friend... You know how we met? A pair of hucksters trying
to rob each other... Back in ’78 or thereabouts.”
The visuals intensify as we witness a robbery in progress, chaos erupting as
masked figures burst into a bank. ”Ladies and gentlemen, this is a robbery,”
declares one of the outlaws, setting the stage for a clash between lawlessness
and order.
Amidst the chaos, snippets of camaraderie emerge: ”Sons of Dutch. Makes
us brothers.” But looming shadows of betrayal and regret cast doubt on these
bonds. ”Sometimes, brothers make mistakes,” acknowledges the voiceover,
acknowledging the complexities of loyalty and survival in this unforgiving
world.
The trailer crescendos with a crescendo of gunfights, horseback chases, and
impassioned speeches. ”You’ll never change. I know that,” declares a voice,
capturing the immutable nature of the human spirit amidst adversity.
Throughout, a thematic motif resonates: ”You have to love yourself a fire.”
The elemental symbolism underscores the primal nature of existence in a land
where survival demands courage and cunning.
As the trailer draws to a close, we’re left with the haunting refrain: ”Stay
strong. Stay with me.” The screen fades to black, leaving us hungry for more
of this epic tale set against the backdrop of the untamed West.
With breathtaking visuals and evocative storytelling, this Red Dead Redemp-
tion trailer promises an unforgettable journey through a world where danger
lurks around every corner, and the line between hero and outlaw blurs in the
dust and shadows of the frontier.

Figure 4.16: Dense caption generated by Behavior-LLaVA for the video of the official trailer of the game Red Dead Redemption 2. The original
video is posted at URL: https://www.youtube.com/watch?v=eaW0tYpxyp0.
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The scene is set at a packed stadium buzzing with excitement, the air thick with anticipation
as Argentina and France face off in what promises to be an epic World Cup final. Lionel
Messi steps up confidently to take a crucial penalty early in the match, the tension palpable
as he eyes the goal. The commentator’s voice echoes through the stadium, ”He’s got the
ground, he’s got a penalty! A heart beats... And Messi!” The crowd holds its breath as
Messi strikes the ball cleanly, sending it into the back of the net. The stadium erupts with
cheers as Argentina takes the lead, setting the stage for a thrilling encounter.
As the game unfolds, both teams showcase their attacking prowess. Argentina’s Angel Di
Maria emerges as a standout, capitalizing on a swift counterattack to score a spectacular goal.
”Alvarez, here’s McAllister, Di Maria is the spare man, and how Di Maria! Glorious goal!
Argentine gold!” The Argentine fans go wild, waving their flags and chanting passionately.
However, France fights back fiercely, earning a penalty of their own which they duly convert.
The drama intensifies in the second half as France’s Kylian Mbappé dazzles with his speed
and skill, scoring a breathtaking equalizer. ”Mbappé, to Lamp, Mbappé! Oh wow!” The
match swings back and forth, with both teams pushing for victory. In the dying moments of
extra time, the score is deadlocked at 3-3 when Argentina’s goalkeeper makes a crucial save,
denying France a late winner. The match heads to a nail-biting penalty shootout. With nerves
of steel, Argentina’s players step up and convert their penalties flawlessly, culminating in a
decisive save by the goalkeeper. ”Argentina, champions of the world!” The stadium erupts
once more, as Messi lifts the World Cup trophy amidst a sea of jubilant fans, marking a
historic and unforgettable victory for Argentina

Figure 4.17: Dense caption generated by Behavior-LLaVA for the video of Argentina vs France FIFA World Cup Qatar 2022 Highlights. The
original video is posted at URL: https://www.youtube.com/watch?v=zhEWqfP6V_w.
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Model Summarization (3 Shot) Moment Retrieval Highlight Detection
BLEU ROUGE METEOR mAP (avg) mAP

Behavior-LLaVA[Replay-Graphs] 11.2 19.1 25.3 35.2 34.9
Behavior-LLaVA[Mem-Recalls] 11.9 20.3 26.9 34.9 33.1
Behavior-LLaVA 10.6 18.3 22.7 33.1 32.7
LLaMA-VID 9.1 16.5 20.3 30.3 32.4
Video-ChatGPT 5.0 14.0 19.7 - -

Table 4.18: Improvement on downstream content understanding tasks by intro-
ducing more behaviour signals. Brackets [] denote the new behaviour
that we include. Replay graphs (Khandelwal et al., 2024). Mem-
Recalls (SI et al., 2025) Evaluation done on Multi-shot video summa-
rization (Han et al., 2023) and MomentDETR (Lei et al., 2021)

Figures 4.12, 4.13, 4.14, and 4.15, 4.16, 4.17, show several randomly sampled

qualitative examples for dense captions generated by Behavior-LLaVA over images

and videos respectively. It can be noticed that despite not being explicitly trained

for this task, the model performs quite well, picking up various artistic, cognitive,

and object and material properties. From Table 4.14, while Behavior-LLaVA

shows a decrease in correctness over LLaMA-Vid, it shows significant improvement

in other aspects, including detail and quality. On these aspects, it even comes close

to 2.5X larger models (LLaVA-1.6 (34B)).

Next, in Table 4.6 we compare the signals from behavioral data of percep-

tion and action. For this, we compare Behavior-LLaVA trained on BLIFT and

Behaviour-LLaVA trained on Salicon salient regions and objects. Further, within

BLIFT, we compare the performance from predicting singled out behaviours in-

cluding likes/views, titles, comments. It can be noted that training on just Sali-

con results in a performance decrease for the lower-level task of action recognition

(MSRVTT-QA) but improves on the higher-level task of Emotion recognition.

However, the gains are smaller than those observed with training on BLIFT.

4.2.5 Conclusion

In this paper, we explore the idea of learning behavior leading to learning content

better. Humans produce behavior in response to content. Hence, logically, behav-

ior should contain signals about content, which, if used as a training task, should

help in learning content better. We follow this line of thought and show that train-

ing large vision and language models on user behavior data of comments and likes
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collected from Reddit and YouTube leads to performance improvements across a

wide variety of tasks. The gains are higher on higher-level tasks such as emotion

recognition, persuasion strategy classification, and question answering and smaller

on lower-level tasks like action and object recognition. Further, the gains remain

even after fine-tuning the VLMs on those benchmarks, thus demonstrating the

importance of learning behavior in understanding content better.

4.2.6 Appendix

4.2.6.1 Listings

Listing 4.4: GPT-4V Prompt to calculate correctness of a image dense caption
You are a great critique for analyzing images and captions.

Assess the performance of a dense image captioning model based on the correctness of the captions generated.

Please assess the correctness of the provided caption in relation to the image. Consider whether the caption

accurately identifies and describes the main subjects or objects depicted in the image. Assess whether the

caption correctly interprets the relationships between elements within the image, such as actions,

interactions, or spatial arrangements. Focus on the precision and accuracy of the information presented in

the caption. Provide a score reflecting the level of correctness, ranging from 1 (low correctness) to 10 (

high correctness).

Listing 4.5: GPT-4V Prompt to calculate detail of a image dense caption
You are a great critique for analyzing images and captions.

Assess the performance of a dense image captioning model based on the detail of the captions generated.

Evaluate the level of detail captured in the provided caption. Consider how well the caption describes specific

attributes, features, or aspects of the image, including colors, shapes, textures, sizes, and any other

relevant details. Assess whether the caption provides comprehensive information about the scene depicted

in the image, covering both prominent and subtle elements. Pay attention to the depth and specificity of

the details conveyed in the caption. Provide a score indicating the richness of detail, ranging from 1 (low

detail) to 10 (high detail).

Listing 4.6: GPT-4V Prompt to calculate quality of a image dense caption
You are a great critique for analyzing images and captions.

Assess the performance of a dense image captioning model based on the quality of the captions generated.

Assess whether the caption is concise yet descriptive, providing meaningful and engaging information about the

image. Evaluate the caption's ability to evoke a clear mental image corresponding to the visual content.

Additionally, consider if the caption is insightful or imaginative in its description. Provide a score

reflecting the overall quality of the caption, ranging from 1 (low quality) to 10 (high quality).
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4.2.6.2 Dataset Descriptions

1. MSVD-QA and MSRVTT-QA: These datasets are based on Microsoft Re-
search Video Description (Chen and Dolan, 2011) and MSR-VTT corpora
(Xu et al., 2016b) and are extensively used in many video captioning and
question-answering experiments. The MSVD-QA dataset has a total num-
ber of 1,970 video clips and 50,505 question-answer pairs. The MSRVTT-QA
dataset contains 10K video clips and 243k question-answer pairs.

2. ActivityNet-QA (Caba Heilbron et al., 2015) is a benchmark primarily for
human activity understanding containing 849 hours of video, including 28,000
action instances.

3. VideoEmotion-8 (Asur and Huberman, 2010) dataset comprises 1,101 user-
generated videos sourced from YouTube and Flickr, each containing a mini-
mum of 100 videos per emotional category, as per Plutchik Wheel’s emotion
model.

4. Ekman-6 (Xu et al., 2016a) dataset is compiled from social websites, with
each of its 1,637 videos labeled with a single emotion category based on
Ekman’s psychological research.

5. CAER (Lee et al., 2019) dataset, sourced from TV shows, consists of 13,201
clips with an average sequence length of 90, each manually labeled with six
basic emotions, aligning with the Ekman-6 dataset.

6. IAPSa (Mikels et al., 2005) is a subset of IAPS, following the Mikels model
with eight emotion categories such as amusement, awe, contentment, excite-
ment, anger, disgust, fear, and sadness. It consists of 395 affective images,
marking the first visual emotion dataset with discrete categories.

7. Emotion6 (Peng et al., 2015) features 1,980 images sourced from Flickr,
each labeled by 15 annotators according to the Ekman model, covering six
emotion categories: happiness, anger, disgust, fear, sadness, and surprise.

8. EmoSet (Yang et al., 2023) encompasses a total of 3.3 million images, in-
cluding 118,102 from social networks and artistic sources, evenly distributed
across various emotion categories. Based on the Mikels model, EmoSet is
categorized into eight emotion categories.

9. Abstract (Machajdik and Hanbury, 2010) exclusively consists of color and
texture combinations without recognizable objects. Differing from the IAPS
dataset where emotions often stem from identifiable objects, the abstract
paintings dataset was peer-rated via a web survey, with each image rated
approximately 14 times. It comprises 228 images spanning eight categories
similar to those in IAPS.

10. Memento10k(Newman et al., 2020) is a short-term video memorability dataset
comprising 10,000 video clips, with 900,000 human memory annotations
recorded at various delay intervals. The video clips were, on average, 3s
long.
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11. VideoMem (Cohendet et al., 2019) is comprised of 10,000 soundless videos,
each lasting 7 seconds, accompanied by memorability scores. Memorability
was measured twice: first, shortly after viewing and again 24-72 hours later
to capture both short-term and long-term memorability effects.

12. LaMem (Khosla et al., 2015) dataset is a short-term image memorability
dataset comprising of 60000 images. The dataset contains scene-centric im-
ages, object-centric images and other types such as images of art, images
evoking certain emotions, and other user-generated images.

13. SUN (Isola et al., 2011) dataset is a short-term image memorability dataset
comprising 2222 images that were sourced from the SUN database.

14. MemCat (Goetschalckx and Wagemans, 2019) dataset is a short-term image
memorability dataset comprising 10000 images. It consists of five broader
memorability-relevant semantic categories (animal, sports, food, landscapes,
vehicles), with 2K exemplars each, further divided into different subcate-
gories (e.g., bear, pigeon, cat, etc. for animal). The images were sourced
from existing image sets: ImageNet, COCO, Open Images Dataset, and
SUN.

15. MediaEval (Kiziltepe et al., 2021a) utilized publicly available links to short-
form video clips, each averaging 6 seconds in duration, with both short-term
and long-term memorability scores. Short-term memorability evaluations
were conducted on videos viewed within the preceding few minutes, while
long-term memorability assessments were based on videos viewed within the
previous 24 to 72 hours.

16. LAMBDA (SI et al., 2025) is a long-term memorability consisting of 2205
video ads collected over 1749 participants covering 276 brands. The average
video length is 33 seconds and the videos are highly complex, consisting of
audio, logos, fast-moving scenes, emotions, etc.

4.2.6.3 Memorability Metrics: Detailed Explanation and Limitations

Our evaluation of memorability models across seven benchmarks (Table 4.13) em-

ploys specific metrics with established justifications in cognitive psychology and

computer vision literature. This section provides detailed justification for our

metric choices and discusses their limitations.

Choice of Spearman Rank Correlation:

We use Spearman’s rank correlation (ρ) as our primary evaluation metric for

memorability prediction, following established practices in memorability research

(Khosla et al., 2015; Cohendet et al., 2019; Newman et al., 2020). This choice is

justified by several cognitive and methodological considerations.
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Memorability is fundamentally a ranking phenomenon where humans consis-

tently order content by memorability with 60-80% agreement. The universal

adoption of rank-based metrics stems from fundamental challenges in memory

assessment: individual differences in motivation, attention span, and cognitive

ability create substantial variation in absolute memory performance across par-

ticipants and experimental contexts. However, the relative ordering of content by

memorability remains remarkably stable across these individual differences (Isola

et al., 2011; Khosla et al., 2015). This stability occurs because temporal factors

affect all content similarly - when the delay between initial viewing and mem-

ory testing increases, memorability scores for all images decrease proportionally,

preserving their rank ordering (Isola et al., 2011). This temporal invariance of

ranks, combined with their robustness to individual participant variations, makes

correlation-based metrics the most appropriate and reliable approach for memo-

rability evaluation across diverse experimental settings and populations.

Therefore, rank correlation has been the standard evaluation metric chosen by

all major memorability datasets and studies in the field. This includes the foun-

dational work by Isola et al. (2011) for SUN memorability, Khosla et al. (2015)

for LaMem, Cohendet et al. (2019) for VideoMem, Newman et al. (2020) for Me-

mento10k, Goetschalckx and Wagemans (2019) for MemCat, and MediaEval chal-

lenges (Kiziltepe et al., 2021a). As demonstrated in Chapter 5, Table 4.13, human

consistency scores across memorability datasets range from 0.55 (LAMBDA) to

0.78 (MemCat), indicating that humans naturally rank content by memorability

rather than providing absolute scores.

Human Consistency as Performance Ceiling:

Our evaluation framework uses human consistency scores as theoretical perfor-

mance ceilings, as detailed in Chapter 5’s comprehensive analysis. Human consis-

tency measures the extent to which humans agree on the memorability of an image

or a video. Human agreement levels across our seven benchmarks demonstrate the

inherent limits of memorability prediction:

• Image Datasets: LaMem (0.68), MemCat (0.78), SUN (0.75)
• Video Datasets: Memento10k (0.73), VideoMem (0.61), LAMBDA (0.55)

These values represent the theoretical maximum performance achievable, as
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they reflect the extent to which humans themselves agree on memorability rank-

ings. Our Behavior-LLaVA models approach but do not exceed these consis-

tency levels, indicating meaningful memorability modeling within human agree-

ment ranges. Going beyond these consistency levels requires personalization of a

memorability model for each user.

Limitations and Methodological Challenges:

Despite the strong theoretical foundation, our memorability evaluation ap-

proach has several important limitations:

1. Dataset Size Variations: Our benchmarks range from 1,500 (MediaEval)
to 60,000 (LaMem) samples, creating potential evaluation inconsistencies.
We mitigate this through correlation metrics that are robust to sample size
differences, but acknowledge that smaller datasets may not capture the full
complexity of memorability patterns.

2. Temporal Memory Types: Our evaluation spans both short-term mem-
ory (STM: delays <10 minutes) and long-term memory (LTM: delays 1-3
days). As demonstrated in Chapter 5’s ablation studies, STM generalizes
better to LTM in zero-shot settings than vice versa, indicating that different
memory systems may require specialized modeling approaches.

3. Content Complexity Spectrum: Performance gains correlate with cogni-
tive complexity, with highest improvements on complex multimodal content
(LAMBDA: 219% zero-shot improvement) and more modest gains on sim-
pler content (SUN, MemCat). This suggests our behavioral training may be
particularly effective for complex, real-world content but less impactful for
controlled laboratory stimuli.

4. Human Consistency Ceiling Effects: The relatively low human con-
sistency scores, particularly for complex video content (LAMBDA: 0.55,
VideoMem: 0.61), indicate fundamental challenges in memorability assess-
ment.

5. Cross-Domain Generalization: While our models show consistent im-
provements across all benchmarks, the magnitude of gains varies signifi-
cantly. As shown in Chapter 5’s domain adaptation analysis, there are
substantial performance losses when modeling memorability for brands or
content types not seen during training, suggesting domain-specific memora-
bility patterns.

Future Directions for Metric Development:

Based on our analysis and the limitations identified, we propose several direc-

tions for improving memorability evaluation:
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• Personalized Memorability Models: Developing metrics that capture
different aspects of a person’s memorability (visual, semantic, emotional)
rather than relying on average statistics.

• Temporal Modeling: Incorporating time-dependent memorability mea-
sures that account for forgetting curves and memory consolidation processes.

• Real-World Validation: Developing evaluation protocols that better re-
flect natural viewing conditions and real-world memorability assessment sce-
narios.

4.2.6.4 Failure Case Analysis and Model Limitations

Although our proposed models exhibit notable advancements across various bench-

marks, a thorough analysis uncovers several systematic failure modes that offer

critical insights into the constraints of integrating behavioral signals for content

understanding. This section examines these failure cases and proposes hypotheses

regarding their underlying causes.

Scale-Dependent Performance Limitations: In multiple evaluation tables

(Tables 4.15, 4.14, 4.16), Behavior-LLaVA consistently underperforms when com-

pared to significantly larger models such as GPT-4V, despite the benefits conferred

by behavioral training. This pattern suggests that while behavioral signals provide

qualitative enhancements within similar parameter ranges, they are insufficient to

overcome the limitations imposed by model scale. Behavior tokens enhance under-

standing capabilities relative to models of comparable size but cannot substitute

for the extensive knowledge representations and reasoning capabilities that arise

from larger parameter counts. This indicates that behavior optimization functions

as a complementary enhancement rather than a replacement for model scale in

achieving optimal performance across diverse tasks.

Low-Level Task Interference: An analysis of Table 4.17 reveals that Behavior-

LLaVA exhibits diminished performance on basic perceptual tasks, with reductions

of 0.22% in Action recognition and 0.03% in Object recognition when augmented

with story generation. This pattern indicates that while behavioral signals are

advantageous for high-level cognitive tasks such as emotion recognition, memo-

rability prediction, and persuasion strategy classification, they offer limited value

or may even interfere with basic perceptual tasks that necessitate precise object

and action recognition. This suggests a misalignment between the objectives of
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behavior optimization and the requirements of low-level visual processing, where

behavioral training may introduce noise or competing objectives that detract from

accurate perceptual recognition.

Accuracy-Engagement Trade-offs in Behavior-LLaVA: Table 4.14 illus-

trates a trade-off in the dense captioning performance of Behavior-LLaVA. While

the model demonstrates improvements in detail (6.57%) and quality (9.72%) met-

rics, it shows a 1.3% decrease in correctness compared to LLaMA-Vid (7.3 vs 7.4).

This pattern suggests that behavioral training introduces a trade-off between fac-

tual accuracy and the generation of engaging content. Behavior-LLaVA learns

to produce more detailed and qualitatively appealing captions by incorporating

stylistic elements that users find engaging, but this enhancement comes at the

expense of precise factual description. The model appears to prioritize emotional

resonance and aesthetic appeal over strict adherence to visual facts, reflecting the

behavioral signals it was trained on rather than ground truth accuracy.

Cross-Domain Overfitting in ScanTextGAN: An analysis of Tables 4.1,

4.2, and 4.3 reveals that ScanTextGAN experiences significant performance degra-

dation when applied to cross-domain datasets. Notably, in cross-domain evalua-

tion (Table 4.2), the LSTM baseline outperforms ScanTextGAN on Vector similar-

ity (0.984 vs 0.966) and Length similarity (0.973 vs 0.945) metrics, despite ScanT-

extGAN’s superior in-domain performance on the CELER dataset (Table 4.1).

This suggests that ScanTextGAN overfits to the specific linguistic patterns and

reading behaviors present in the news-reading CELER dataset. When applied to

movie reviews, tweets, and sarcastic quotes, the model fails because these domains

possess fundamentally different syntactic structures, vocabulary distributions, and

cognitive processing patterns. The adversarial training component may exacer-

bate this overfitting by learning domain-specific discriminative features that do

not generalize across textual domains.

Intent-Awareness Limitations in ScanTextGAN: While Table 4.4 demon-

strates that intent-aware scanpaths achieve superior performance (0.8477 vs 0.8404

F1 for sentiment analysis), the base ScanTextGAN model fails to capture task-

specific reading behaviors without explicit conditioning. This limitation reveals

that human reading behavior is context-dependent and varies significantly based
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on the reader’s cognitive intent (e.g., sentiment analysis vs sarcasm detection).

ScanTextGAN’s failure to automatically adapt to different cognitive tasks suggests

that the model learns generic reading patterns rather than task-specific attention

mechanisms. This indicates a limitation in the model’s ability to understand the

dynamic relationship between reading intent and scanpath generation.

4.2.6.5 Limitations

In this paper, we try to show the hypothesis that training on the behavior modality

improves learning of the content modality. We train the models on comments

and likes to show this. We test our models on multiple benchmarks and obtain

positive results. While we try to cover a wide variety of tasks and while results do

conclusively show that the hypothesis is true, yet, we can test on more benchmarks

covering even more tasks. Similarly, we can show it with multiple models, other

than LLaMA-Vid.

4.2.7 Broader Impacts

Our paper talks about how behavioral training can positively impact content un-

derstanding of VLMs. We think this will be useful in various content understand-

ing applications such as question answering, captioning, etc.

4.2.7.1 Ethical Implications

This paper demonstrates that training on behavioral modalities enhances the

learning of content modalities. Models trained on user interactions such as com-

ments and likes were tested on multiple benchmarks and yielded positive results.

While these findings present exciting opportunities for advancing content under-

standing in AI systems, they also raise important ethical considerations that must

be carefully addressed.

1. No personally identifiable information (PII) is used to improve content un-

derstanding. Instead, aggregated behavioral data, including replays, likes, and

comments, is utilized, ensuring user privacy. We have implemented rigorous
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anonymization and aggregation techniques to protect individual user identities.

2. We explicitly acknowledge the inherent biases that may exist in data sourced

from social media platforms such as Reddit and YouTube. Despite our rigor-

ous data filtering and cleaning processes, we recognize that the dataset may still

be subject to demographic skews, self-selection bias, and algorithmic influences.

These biases could potentially lead to uneven model performance across different

user groups or reinforce existing societal biases. To mitigate these issues, we em-

phasize the importance of considering these broader implications when applying

our model and interpreting its results.

3. We acknowledge the need for greater cultural diversity in our dataset. To

address this, we plan to release our artifacts as open-source and encourage commu-

nity contributions to incorporate multilingual and multicultural data. This could

involve expanding the range of subreddits and YouTube channels included in our

dataset, with the aim of capturing a more diverse and representative spectrum

of receiver behavior across different cultural contexts. By taking this approach,

we hope to enhance the ethical considerations and societal impact of our work,

providing a more holistic view of behavioral patterns in various cultural settings.

However, we also recognize that this approach may introduce new challenges, such

as ensuring the quality and reliability of community-contributed data.
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Chapter 5

Optimizing Behavior: Generating Content to

Optimize Behavior

In the last chapters, we discussed large content and behavior models (LCBMs)

with the ability to generate content conditioned on behavior, generate (simulate)

behavior conditioned on content, and understanding of content and behavior. In

this chapter, we focus specifically on the capability of generating content con-

ditioned on behavior. LCBMs were built following the instruction fine-tuning

paradigm. Using LCBMs, we showed that including behavior data as receiver

tokens along with content data (communicator tokens) helps complete the entire

communication flow and train the LLM to teach it both the receiver side and the

communicator side of the flow.

In this chapter, we take a deeper look into the common use case of generating

content that can help get the behavior the communicator wants. For instance, a

marketer wants to write emails or compose tweets that will bring her the maximum

number of link clicks and likes. We propose several solutions to solve this problem

and compare several paradigms to achieve this. We show this over both short-term

key performance indicators (likes), and long-term indicators (brand memorability).

5.1 Long-Term Ad Memorability: Understand-

ing And Generating Memorable Ads

Despite the importance of long-term memory in marketing and brand building,

until now, there has been no large-scale study on the memorability of ads. All

previous memorability studies have been conducted on short-term recall on spe-

cific content types like action videos. On the other hand, long-term memorability

is crucial for advertising industry, and ads are almost always highly multimodal.

Therefore, we release the first memorability dataset, LAMBDA, consisting of 1749



participants and 2205 ads covering 276 brands. Running statistical tests over dif-

ferent participant subpopulations and ad types, we find many interesting insights

into what makes an ad memorable, e.g., fast-moving ads are more memorable than

those with slower scenes; people who use ad-blockers remember a lower number

of ads than those who don’t. Next, we present a model, Henry, to predict the

memorability of a content. Henry achieves state-of-the-art performance across all

prominent literature memorability datasets. It shows strong generalization per-

formance with better results in 0-shot on unseen datasets. Finally, with the intent

of memorable ad generation, we present a scalable method to build a high-quality

memorable ad generation model by leveraging automatically annotated data. Our

approach, SEED (Self rEwarding mEmorability Modeling), starts with a language

model trained on LAMBDA as seed data and progressively trains an LLM to gen-

erate more memorable ads. We show that the generated advertisements have 44%

higher memorability scores than the original ads. We release this large-scale ad

dataset, UltraLAMBDA, consisting of 5 million ads. Our code and the datasets,

LAMBDA and UltraLAMBDA, are open-sourced.

5.1.1 Introduction

“The first lesson of branding: memorability. It is very difficult buying something

you can’t remember.” - Sir John Hegarty, the creator of the iconic ads for Levi’s,

Nike, Microsoft, Tinder, and Coke.

The global advertising industry is $700 billion+ industry (Forbes, 2022). Three

out of the ten largest companies by market capitalization are advertising com-

panies with average revenues exceeding $250 billion. The World Wide Web is

mostly funded by advertising. Given that marketers are spending such large sums

of money on advertisements, it is imperative to know if their brand would even be

recalled at the customer’s purchase time. This would help the marketers optimize

their costs, content, delivery, and audience, ultimately helping in boosting sales.

Most of the studies carried out in the machine learning literature have been on

short-term memorability (memorability testing in less than 5 minutes) on action

videos like walking and dancing (Table 5.1). On the other hand, customer pur-

chase decisions are rarely carried out within five minutes of watching an ad. In
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fact, the marketing funnel model popular in the marketing literature says that

customers pass through several stages of a funnel, like awareness and consider-

ation, before the actual sale (Lavidge and Steiner, 1961). Further, in the ML

literature, there have been no memorability studies on advertisements. Adver-

tisements are highly multimodal; they contain video, speech, music, text overlaid

on scenes, jingles, specific brand colors, etc. None of these elements are found in

previous studies like VideoMem, Memento10k, LaMem, etc. (refer to Table 5.1

for a detailed comparison).

What drives memory? Memory over content is determined by two factors: hu-

man factors and the content itself (Bylinskii et al., 2015). Human factors represent

the viewer’s thoughts, emotions, and actions, while the content factors are words

and raw pixels of text, images, and videos. Foundational large-scale studies on

memorability (Isola et al., 2011; Khosla et al., 2015; Cohendet et al., 2019; Aka-

gunduz et al., 2019) showed that there is sufficient consistency between humans in

what they remember. Human-human memorability consistency scores are in the

range of 0.6-0.8. This means that the memorability ranks of a content between

two groups of humans are more than 60% correlated.

These initial studies also tried to answer the question of what makes a content

memorable. They found that low-level image features like colors, aesthetics, num-

ber of objects, and such have very little correlation with whether the image was

remembered. On the other hand, high-level features like object and scene seman-

tics have significant correlation with memorability. For example, human images

are more memorable than object images. Further, these initial studies contributed

to protocols for conducting memorability studies. They proposed a competitive

memorability game, where they asked participants to recognize as many images

as they could remember. The game ended for those participants whose scores fell

below certain success rate thresholds. However, this protocol limits the scope of

these studies to short-term memorability (a few seconds to a few minutes), and

the competitive nature makes the study unnatural and, thus, not applicable to

real-world scenarios like marketing where the customers are not competing with

each other to remember the brand. Therefore participants in all these studies are

aware that they are being tested for memorability, this can create a deviation from

their natural behaviour commonly known as the Hawthorne effect in psychology
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(McCarney et al., 2007; Roethlisberger and Dickson, 2003; Malavolta et al., 2022)

What drives customer memory? Customer purchase decision is a long process.

Marketing theory formulates this as a funnel where customers pass through several

stages like awareness, consideration, and evaluation before the actual sale (Lavidge

and Steiner, 1961). Due to the purchase funnel being a multi-stage lengthy process,

long-term memorability (LTM) is the closest proxy to model customer memory

(Norris, 2017; Waugh and Norman, 1965). While the LTM store (as distinct from

the STM store) has been studied for over five decades in psychology (Ebbinghaus,

1885; Atkinson and Shiffrin, 1968), there are no large-scale studies containing

data over such time period that can help us model the long-term customer LTM

spanning days or more (Norris, 2017; Waugh and Norman, 1965). Unfortunately,

STM datasets, typically measuring memorability of a few seconds to a few minutes,

are not good proxies to model customer memory. Moreover, the competitive nature

of the memorability games in the previous studies further disconnect the modeling

from advertising use cases.

To answer the question of what drives customer memory, there have been

efforts in marketing literature where researchers have conducted many field ex-

periments with the intent to prove certain hypotheses. For instance, Li et al. (Li,

2010) conducted a field experiment on advertisements shown during the 2006 Su-

per Bowl Games where they asked the audience to recall the brands they saw in

the game held (at least) a day earlier. They found a strong primacy effect, where

viewers remembered brands more if they occurred earlier when controlling for

the commercial length. Similarly, there have been studies to determine the effect

of syntactic complexity (Atalay et al., 2023), emotional content (Putrevu et al.,

2004; Mai and Schoeller, 2009), repetition (Schmidt and Eisend, 2015), spot length

(Newstead and Romaniuk, 2010; Varan et al., 2020), the position of brand logo and

imagery (Newstead and Romaniuk, 2010), sound presence (Bellman et al., 2021),

and on customer factors like involvement and relevance (Newstead and Romaniuk,

2010; Schmidt and Eisend, 2015).
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Dataset #Samples Memory Type Memory
Retrieval
Process

Content Average
Screen Du-
ration

Audio
Present

Human
Consis-
tency

Memorability
Measure-
ment Proto-
col

Memento10k
10,000 ST (< 10 mins) Recognition Videos of single type of action

obtained from amateur videos
3s Yes 0.73 Competition

VideoMem 10,000 ST (few mins), LT
(1-3 days)

Recognition Videos of a single type of ac-
tion obtained from professional
(staged) footage

7s None 0.48 (ST),
0.19 (LT)

Competition

LaMem 60,000 ST (< 3.5 mins) Recognition General Images 0.6s None 0.68 Competition
SUN 2,222 ST (< 4.4 mins) Recognition General Images 1s None 0.75 Competition

MemCat 10,000 ST (< 3.5 mins) Recognition General Images 0.6s None 0.78 Competition
MediaEval 1500 ST (few mins) and

LT (< 3 days)
Recognition Short video clips collected from

Twitter and Flickr
6s None - Competition

LAMBDA
(Ours)

2,205 LT (1-3 days) Recognition
and Recall

Videos of multimodal advertise-
ments

33s Yes 0.61 Natural

Table 5.1: Comparison of all the major (image and video) memorability datasets available in the literature along with LAMBDA (ours).
The datasets are compared on the following axes: number of samples, type of memorability (short-term (ST) and long-term (LT)),
memory retrieval process (recall or recognition), type of content (images/videos and their type), duration with which the sample
was shown on the participants’ screen, whether audio was present or not, human consistency achieved in the study, and the protocol
followed in the study to collect the data. Memento10k - (Newman et al., 2020), VideoMem - (Cohendet et al., 2019), LaMem -
(Khosla et al., 2015), SUN - (Isola et al., 2011), MemCat - (Goetschalckx and Wagemans, 2019), MediaEval - (Kiziltepe et al.,
2021b)
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Figure 5.1: Correlations between content factors (a-d), interaction factors (e-g), and customer behavior factors (h-j) with memorability on
LAMBDA samples. While emotion has a high correlation with memory, other content factors do not have much correlation.
Further, while there is little correlation between the order of videos seen and memorability; with time, participants’ memory of
the videos shows a forgetting trend. Video popularity, as measured by YouTube likes/views, shows a slight positive correlation
with memory. Average brand relevance has a strong positive correlation with memory, with top sectors being remembered as food,
entertainment, and tech. Speech, silence and music have little effect with silence having the highest positive correlation with recall.
Silence ratio is measured as the percentage of silence in a video, similarly for music and speech.
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While these studies have contributed much towards understanding the factors

that drive customer memory, they are limited in their scope. These field exper-

iments evaluate the effect of a single content factor while controlling for others.

Further, these are conducted on a small number of advertisements.Therefore, to

model LTM over advertisements, we conduct the first large-scale human study

on long-term advertisement memorability*. We call it LAMBDA (Long-term Ad

MemoraBility DAtaset). Over two years, we conducted an LTM study involving

1749 participants across four sessions across two institutes to collect LAMBDA.

We collect memorability scores over 2205 ads from 276 brands, covering 113 in-

dustries. On day 1, participants saw ads, and after a lag time of at least one

day, they answered questions testing their brand recall, ad recall and recogni-

tion, scene recall and recognition, and audio recall (§5.1.2.2). Next, we average

the brand recall scores across participants and compute the average long-term ad

memorability scores. Then, we use these scores to train machine learning models

to predict long-term ad memorability.

How can we model customer memory? To model customer memory,

we design a novel architecture, Henry† (Fig. 5.2), incorporating world-knowledge

from large language models (Llama (Touvron et al., 2023)), visual knowledge from

vision encoder (EVA-CLIP (Sun et al., 2023)) and specialized perception modules

covering visual and cognitive knowledge about the ad. The world knowledge helps

Henry to understand the semantics of the ad, the brand knowledge and consoli-

date them with the visual semantics from the ad. The visual encoder helps the

model to “see” the ad. We convert the visual encoder embeddings to language

space using QFormer (Li et al., 2023b) and further augment them with special-

ized “verbalizations” involving visual scene descriptors like visual caption, optical

character recognition (OCR), automatic speech recognition (ASR), and cognitive

descriptors like emotion and scene complexity scores, which help the model ground

the visual and cognitive knowledge in the LLM’s world knowledge. We train the

model on our LTM data samples and obtain higher than human consistency scores.

Further, we train Henry on other short and long term image and video memorabil-
*We obtained the Institutional Review Board Approval to conduct the study from our insti-

tute.
†We name the model Henry in honor of the immense contributions by the patient Henry

Molaison (H.M.) (Squire, 2009). An experimental surgery conducted on him resulted in the
discovery of the distinct regions responsible for LTM and STM.
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advertisement for
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Figure 5.2: Predicting memorability by encoding visual information (via visual
encoder EVA-CLIP), cognitive concepts (via verbalization module),
and world knowledge (through fine-tuned Llama). We instruction fine-
tune the combined model end to end to predict user memorability.
Snowflake and fire symbols denote the frozen and unfrozen parts of
the architecture.

ity datasets in the literature - LaMem, MemCat, SUN, Memento10k, MediaEval,

and obtain state-of-the-art performance on all of them. We also show that Henry

performs well on unseen datasets in zero-shot settings, performing better than

models specifically trained on those datasets.

How to generate memorable Ads? One of the primary goals of modeling

content memorability is to generate more memorable content. The task of gener-

ating more memorable ads is given the ad description containing the brand and

campaign title to generate the ad scenes and dialogues. However, there is no data

in the literature for this task. Therefore, we turn to synthetic data generation and

LLM-as-a-judge paradigm (Khandelwal et al., 2024; Zheng et al., 2023). We first

collect a large-scale advertisements dataset, collecting brand name, ad text, time,

ad content, and channel. Then, we use Henry as a judge to simulate memorabil-

ity on the collected ads. We ultimately get a dataset of 5 million advertisements

with their automatic speech transcripts, OCR, automatically detected objects, col-

ors, aesthetics, captions, emotions, logos, and memorability scores. We call this

dataset UltraLAMBDA. We then select high memorability samples from Ultra-

LAMBDA to train Llama-13B to generate memorable ads. Finetuning LLama for

two iterations on this automatically constructed dataset yields an improvement of

44% in memorable ad generation.

Our main contributions are summarized as follows:

• We release the first large-scale dataset, LAMBDA, on long-term advertisement
memorability involving more than 1700 participants. We collect memorability
scores over 2205 ads from 276 brands (157/276 brands are from SnP 500), cov-
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ering 113 industries. Further, we introduce a new protocol to measure customer
memory of brands (§5.1.2.2).

• We design a novel model, Henry, which can model both STM and LTM and
can incorporate scene understanding, brand knowledge, and speech (§5.1.3).
Henry achieves state-of-the-art performance on eight literature image and video
memorability datasets (§5.1.4.1). Further, we show that Henry performs well
on unseen datasets in zero-shot settings.

• We propose the task of memorable ad generation. We release the first large
scale ad dataset, UltraLAMBDA, consisting of 5 million ads with their au-
tomatically extracted content labels like ASR, captions, OCR, emotions, and
memorability scores assigned by Henry. Using UltraLAMBDA, we first show
that large LLMs like GPT-3.5 and 4 are unable to generate memorable content.
Then, we train Henry to progressively generate more memorable ads resulting
an average improvement of 44% in memorability scores (§5.1.5). Through this,
for the first time in literature, we also show the use of synthetic data on a task
for which no large scale data exists.

• We conduct an extensive set of experiments on memorability prediction, show-
ing the effects of LTM on STM modeling and vice-versa, and the effects of
changing world-knowledge with time, scene understanding, brand knowledge,
and speech on memorability modeling (§5.1.4.1).

5.1.2 LAMBDA Protocol, Study & Insights

We first give an overview of LAMBDA data collection process and the annota-

tion protocol. We also present some interesting characteristics LAMBDA exhibits

about LTM.

5.1.2.1 Video Collection

In contrast to previous video memorability works where videos were soundless

and only of action videos (Newman et al., 2020; Cohendet et al., 2019), the videos

in our dataset come from multimodal ads released on YouTube channels of 276

major brands covering 113 industries. We collect 2205 such ads spanning over the

years 2008-2023. The videos have an average duration of 33 seconds. Out of all

the videos, 2175 have audio in them. The collected advertisement videos have a

variety of characteristics, including different scene velocities, human presence and

animations, visual and audio branding, a variety of emotions, scene complexity,

and audio types.
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5.1.2.2 Annotation Protocol

At the outset, participants are given a preliminary questionnaire aimed at estab-

lishing their brand-related interactions and media consumption habits. Partici-

pants are given a list of fifteen randomly chosen brand options and are asked to

choose those they recall encountering advertisements for during the current year.

Subsequently, participants are presented with another set of fifteen brands and

are instructed to identify those for which they have personally utilized products

within the same timeframe.

In addition, participants are asked about their utilization of ad-blocking soft-

ware and their YouTube subscription. The questionnaire further captures partici-

pants’ digital media habits, including the division of their time spent on YouTube

between mobile and web platforms and their preferred channels for acquiring in-

formation about new products and brands.

Following the initial questionnaire, participants proceed to the core segment

of the study, where they are shown 11 advertisements in a sequential manner.

Notably, the eleventh advertisement is deliberately repeated for half of the par-

ticipants, while it is unique for the other half. To ensure participant engagement,

attention-check questions are placed between every two to three advertisements.

These questions are common sense questions like “How many legs does a cow

have?”. If the participant fails to answer the question within 10 secs, they are re-

quested to rewatch the video. After the 11th video, participants are asked if they

recollect watching the ad in the span of the study. Interestingly, 15% participants

were not able to recognize the repeated video correctly.

The memorability test involved 1,749 participants: 971 in a take-home setting

and 778 in an auditorium. Take-home participants received emailed questionnaires

after 24 hours, with responses accepted for 72 hours. Auditorium participants com-

pleted questionnaires at 24, 36, or 72 hours, evenly split among these intervals.

The questionnaire assessed two types of memory: brand recognition and ad recall.

For recognition, participants identified encountered brands from a list of 20 ran-

domly chosen brands. For recall, they described remembered ads for the brands
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recognized in the previous prompt‡.

The average memorability score was 67.5% (SD of 13.6%). To evaluate human

consistency, we split our participant pool into two independent halves, and quan-

tified how well memorability on the first half of the participants matched with the

second half of the participants. Averaging over 25 random split half trials, we get

a Spearman’s rank correlation (ρ) of 0.77 for brand recall (compared to 0.68 for

images in (Khosla et al., 2015), 0.616 for videos in (Cohendet et al., 2019) and

0.73 in (Newman et al., 2020)). The estimated D prime for the participants comes

out to be 1.848.§

5.1.2.3 What makes an Ad memorable?

Among the many reasons why an ad might be memorable, we investigate the

following factors: brand factors (viz., brand popularity, industry), content

factors (viz., video emotion, scene velocity, length, speech to silence ratio),

customer-content interaction factors (viz., time of seeing the video, order

in which the video was seen, time difference between watching the video and re-

calling the brand), and customer behavior factors (viz., average relevance of

the brand and video popularity).

‡The complete questionnaire for participant one is given in Appendix:§5.1.12.1.
§https://en.wikipedia.org/wiki/Sensitivity_index
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Models Image Datasets Video Datasets
Lamem Memcat SUN Merged Memento10k VideoMem MediaEval LAMBDA

Human Consistency 0.68 0.78 0.75 - 0.73 0.61 - 0.55
10-shot GPT-3.5 0.29 0.18 0.15 - 0.07 0.06 0.06 0.06
Regression using ViT feats (ViTMem) 0.71 0.65 0.63 0.77 0.56 0.51 - 0.08
Current Literature SOTA 0.71 0.65 0.68 0.77 0.67 0.56 0.46 -
Henry trained on individual datasets 0.74 0.82 0.73 - 0.75 0.64 0.50 0.55
Henry trained on all (combined)
datasets

0.72 0.79 0.76 0.79 0.72 0.60 0.48 0.52

Table 5.2: Results of Henry (our model) on eight datasets compared with the current best models reported in the literature and GPT-3.5.
Human consistency values are also listed in the top row for reference. It can be observed that our model achieves state-of-the-art
performance across all datasets. Best models are denoted in green and runner-ups in blue . References for the seven literature
SOTA models in the format {dataset: SOTA model citation} are: LaMem: (Hagen and Espeseth, 2023), MemCat: (Hagen and
Espeseth, 2023), SUN: (Fajtl et al., 2018), Merged Image datasets: (Hagen and Espeseth, 2023), Memento10k: (Dumont et al.,
2023), VideoMem: (Dumont et al., 2023), MediaEval: (Lu and Wu, 2021)
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Content Factors: Previous studies like (Isola et al., 2011; Newman et al.,

2020) have investigated the effect of pixel statistics like color and hue, saturation,

and value, scene semantics like the number of objects, the area occupied by ob-

jects on memorability. In general, low-level semantic features have no correlation

with memorability, but higher-level features like the type of scenery has some cor-

relation. For instance, Newman et al. (Newman et al., 2020) found that videos

with people, faces, hands, man-made spaces, and moving objects are, in general,

more memorable than those with outdoor landscapes or dark and cluttered con-

tent. Since only our dataset has videos with cognitive features like emotions and

are also non-silent, we extend the previous analysis to find the effect of speech

and emotion on memory. Fig. 5.1a shows the effect of speech. We observe that

percentage of speech in a video, presence of music, and type of music have a very

little correlation with long term memory. On the other hand, emotions primarily

depicted through speech in ads can explain memorability. We see in Fig. 5.1b that

negative emotions are more memorable than positive emotions. Further, we find

that video length has little effect on memorability (Fig. 5.1c), but scene velocity

has a slightly positive correlation with memory (Fig. 5.1d).

Interaction Factors: Memorability may also depend on the time of the day

the ad was seen. However, we find that the time of day of watching has al-

most no effect on the memorability of the ad (Fig. 5.1e). It may be expected

that memorability decays as time passes. We plot the forgetting curve for ads in

Fig. 5.1f measuring brand recognition against time elapsed between video viewing

and memory assessment. The forgetting coefficient of ads is 0.18, notably than ac-

tion videos (Cohendet et al., 2019). The difference likely arises due to differences

in protocols. Cohendet et al. (2019) (Cohendet et al., 2019) used a two-stage

memory protocol in which participants did both short-term and long-term recall,

thus enhancing their long-term recall. Next, we investigate the effect of the order

in which the video was watched with its memorability (Fig. 5.1g). We see that

order of videos seen has little impact on video memorability, with a slight bias in

favor of the initial and last ads.

Customer Behavior Factors: It might be possible that the videos which

are liked more are remembered more. To investigate this, we test the correlation

of popularity as measured by the ratio of Youtube video likes to views with mem-
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orability. We see that there is a positive correlation between video popularity and

memorability (Fig. 5.1h). Further, in the study, we asked the participants to select

the brands they have personally used from a set of 15 randomly chosen brands and

similarly choose brands they have seen ads for. To prevent any systematic bias,

the brands asked in this question are independent of the brands shown the next

day. We plot thus collected brand relevance values with brand recall in Fig. 5.1i.

We see that average brand relevance is strongly correlated with average recall (co-

eff= 0.53), where entertainment, corporate, and food and beverage sectors, which

are quite popular brands in a student population are the most remembered, while

the others are less remembered (Fig. 5.1j).

5.1.3 Predicting Ad Memorability

Predicting ad memorability—both short-term and long-term—requires integrating

diverse forms of knowledge. We conceptualize this task as a function of three

primary components: (a)content features or visual knowledge derived from the

ad’s audio-visual data, including shapes, colors, objects, and scenes; (b)cognitive

knowledge related to marketing psychology, such as emotion, scene complexity,

and aesthetics; and (c) world knowledge that allows reasoning about real-world

entities and relationships implied by the ad.

Our proposed model, Henry (Fig. 5.2), is designed to fuse these components to

produce a memorability prediction. The processing of content features begins with

a visual encoder (EVA-CLIP) that extracts embedding vectors from ad frames.

To bridge the modality gap between vision and language, these visual embeddings

are projected into the word embedding space of a large language model using a

Q-Former module (Li et al., 2023b). This creates a sequence of ”visual tokens”

that represent the ad’s visual narrative. To enrich this representation, we fur-

ther generate textual ”verbalizations” of the content using specialized perception

modules. These include automatic speech recognition (ASR) transcripts, optical

character recognition (OCR) from on-screen text, and descriptions of cognitive

attributes like the ad’s emotional tone and scene complexity.

Crucially, memorability is not solely an intrinsic property of the content but
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is also influenced by prior audience engagement. We incorporate this through

behavioral signals. Signals such as brand relevance (derived from user studies)

and ad popularity metrics (e.g., YouTube likes-to-views ratio) are encoded into

a format suitable for the LLM. Numerical signals are quantized into descriptive

categories (e.g., ’high’, ’medium’, ’low’ popularity) and converted to text. These

textual representations of behavioral signals are then tokenized.

The final stage involves merging these different information streams. The

latent representations, comprising the projected visual tokens, the tokenized ver-

balizations, and the tokenized behavioral signals, are concatenated into a single,

unified input sequence. This sequence is then fed into the LLM (Llama). The

self-attention layers within the LLM are responsible for fusing these varied sig-

nals, allowing the model to learn complex interactions between the ad’s content,

its prior reception, and real-world concepts. The entire Henry model is then

fine-tuned end-to-end on the LAMBDA dataset to predict a memorability score,

framed as a regression task on a scale of 0 to 99. This integrated approach allows

Henry to ground visual and behavioral data in the rich semantic space of the LLM,

enabling more accurate and nuanced memorability predictions.

For example, consider an Airbnb ad (see Fig. 5.8) showing a couple and the

on-screen text: “Our guest room is paying for our wedding.” This requires the

model to identify the individuals as a couple (visual and cognitive knowledge),

recognize Airbnb as a housing company (world knowledge), and interpret the

warm emotional tone (cognitive knowledge). The LLM uses its rich pretrained

knowledge to reason across these domains.

Finally, the entire Henry model is fine-tuned end-to-end on the LAMBDA

dataset to predict memorability scores (ranging from 0 to 99) via a regression ob-

jective. This unified architecture allows Henry to ground audio-visual and behav-

ioral data in a semantically rich space, enabling more accurate and context-aware

predictions of ad memorability.
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Figure 5.3: Overview of our SEED method for memorable ad generation. Our self-alignment consists of three steps: (i) Self-instruction
creation: We first collect 5 million high-quality ads from YouTube, Facebook, and other mediums. Henry (trained on the complete
train+test sets of LAMBDA) is then used to rate this curated set in an LLM-as-a-Judge fashion. (ii) Self-curation: We select
marketing-like and high-memorability samples from the UltraLAMBDA and LAMBDA datasets. (iii) Instruction fine-tuning:
Henry-SEED is trained on the self-curated set using two tasks: Behavior Simulation and Content Simulation.
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5.1.3.1 Encoding Multimodal Content

The primary goal of this step is to effectively leverage the “world-knowledge”

capabilities of the pre-trained LLM. We choose Llama (Touvron et al., 2023) as

our base LLM. We employ two techniques to convert visual data into language:

encoding visual frames into the LLM space and verbalizing cognitive concepts into

language space. We detail the two steps next.

Sampling Frames: We detect scene changes by analyzing changes in HSV

intensity and edges in the scene, with a 0.3 threshold. We choose the threshold

value from the 30-degree rule inspired by the concept of jump-cut avoidance in

cinematography (Arev et al., 2014; Friedman and Feldman, 2004). The 30-degree

rule can be formulated as follows: after a “cut” (camera stops and re-starts shoot-

ing), the camera angle must change by at least 30 degrees. For dominant frame

selection common blur/sharpness heuristics fail in presence of text in image. So

we extract the frame with the least changes using (Xu et al., 2022a).

Encoding Into Language Embedding Space: To give visual knowledge

to Henry, we use EVA-CLIP visual embedder (Sun et al., 2023). We find that

Global Multi-Head Relation Aggregator (GMHRA) (Li et al., 2021) helps aggre-

gate the ViT’s information better across the time dimension. Next, to effectively

leverage the LLM’s rich language representations, we use a pretrained Q-Former

from BLIP-2 (Li et al., 2023b) with an extra linear layer and additional query

tokens to convert from visual tokens to language tokens.

Verbalizing Cognitive, Experimental, Visual Concepts While visual

content encodings are a good representation of the visual characteristics of the

image, we find that they are still unable to capture rich cognitive and semantic

information present in images. Therefore, to augment the cognitive understanding

of the LLM, we verbalize the frame semantic information using the set of features

that came out important in our memorability analysis (Fig. 5.1) (Bhattacharyya

et al., 2023; Singh et al., 2024a). The cognitive and visual features are given in

Table 5.5 and Listing 5.14. We find that our cognitive verbalization helps ground

the visual perception of LLM in the marketing concepts of the image, helping in

downstream prediction performance (Table 5.7).
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5.1.4 Two-Stage Training

We do two-stage training where in the first stage, we utilize the Webvid (Bain et al.,

2021), COCO caption (Chen et al., 2015), Visual Genome (Krishna et al., 2017b),

CC3M (Sharma et al., 2018), and CC12M (Changpinyo et al., 2021) datasets

to align the visual encoder embeddings with LLM via a large-scale pretraining

approach. In the second stage, we train the model with high-quality memorability

instructions prepared by following the approach described in the last paragraphs.

Henry takes the concatenated inputs, representing the contextual information, and

is trained to predict the memorability score of the given image or video within

the range of 00 to 99 (see Listing 5.14). The memorability score of a video, is

the percentage of times the participants recall the video correctly (we normalise

it to an integer value between 00 and 99 to facilitate the LLM training). During

training, the LLM predicts from the complete vocabulary, while during inference,

we use the softmax function over numeric tokens only to obtain a number.

5.1.4.1 Results and Discussion

We conduct extensive experiments on all literature datasets, covering both videos

and images, STM and LTM. We compare Henry¶ with the current state-of-the-art

models in the literature across eight datasets, including 10-shot GPT-3.5 (text-

davinci-003) (Ouyang et al., 2022) where we provide GPT with the same verbal-

ization (for 10 examples), as we provided to Henry, as well as with prior regres-

sion based methods using features extracted from ViT L-14 (Hagen and Espeseth,

2023). Results are shown in Table 5.2, which demonstrate that Henry outperforms

all the seven models in the literature across all the seven datasets.

We also conduct extensive ablations to understand the effect of different kinds

of data and architectural choices. Tables 5.2 and Table 5.6 show the data ablations.

We see that combining datasets actually worsens the performance across all the

datasets except the SUN dataset. Further, we find that in zero-shot settings, STM

helps in predicting LTM relatively much better than vice versa. This corroborates
¶Computing infrastructure used to conduct the experiments along with hyperparameters

are given in Appendix:§5.1.14.1. All experiments are conducted with three random seeds and
averages are reported.
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with the studies in psychology which show that for a content to get committed to

LTM, it has to pass through STM (Norris, 2017). Therefore, content memorable,

according to STM, has an effect on LTM but, interestingly, not vice versa. Further,

we observe that Henry loses performance for unseen brands. This underscores the

importance of scaling the study across more brands. Next, we evaluate the impact

of various architectural choices (Table 5.7). We find that Henry’s vision branch

is not strong enough by itself to produce good results. Cognitive features that

were found important in our study also improve prediction performance. Low-

level features like objects and colors have the maximum impact on STM, but

higher-level features like emotion, ASR, and aesthetics have a higher impact on

LTM.

5.1.5 Generating Memorable Ads

We introduce the new task of memorable ad generation. Given inputs like a brand

name, a brief campaign description, and the desired ad duration, the goal is to

generate a memorable ad featuring scene descriptions, characters, and dialogues.

While most memorability research focuses on assessing how memorable content

is, little attention has been given to generating memorable content (Danescu-

Niculescu-Mizil et al., 2012; Khosla et al., 2013; Siarohin et al., 2017; Goetschalckx

et al., 2019; Kyle-Davidson et al., 2022). This gap exists primarily due to the lack

of a sufficiently large dataset for training models to generate memorable ads. To

address this, we release a large-scale dataset of raw ads and propose the Self-

rEwarding mEmorability moDeling (SEED) method, which leverages raw ads to

create memorable ones.

SEED method (Fig. 5.3): Step 1: Self-Instruction Creation: We gather

a dataset of 5 million raw ads sourced from social media platforms, including

Facebook, Twitter, Snapchat, and YouTube. For each ad, we collect the brand

name, ad title, links, captions, dates, and ad assets (videos and images).

Step 2: Self-Curation: Since these ads are publicly sourced, we employ few-

shot Mistral-7B (Jiang et al., 2023) to clean and filter the ads, ensuring they are

marketing-focused, semantically relevant, and use proper language (Listing 5.16).
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We then automatically label the ads with cognitive features critical for modeling

memorability (Table 5.5). Subsequently, we use Henry to label the ads for mem-

orability scores. This results in a dataset we call UltraLAMBDA, from which we

select high-memorability ads with scores above 65.

Step 3: Instruction Fine-Tuning: We then train LLaMA-13B to perform two

tasks simultaneously: behavior simulation (predicting ad memorability based on

ad content; Listing 5.14) and content simulation (generating ad scenes and dia-

logues from a brand name, ad title, and required duration; Listing 5.15). We refer

to the model trained using the SEED process as Henry-SEED (Fig. 5.3).

5.1.5.1 Evaluation

We assess the generated ads using four key metrics: (1) memorability, as deter-

mined by Henry-Oracle‖, (2) memorability evaluated using perplexity of the gen-

erative models on ground-truth high/medium/low ads, (3) ad quality as judged

by GPT-4, and (4) ad quality as evaluated by humans. Although content memo-

rability is assessed by average human recall, it is important to note that humans

cannot accurately predict how memorable content will be for others (Isola et al.,

2013). A true test of memorability for generated ads would require a memorabil-

ity study akin to LAMBDA, which is costly and unscalable due to the number

of models and generated ads. Therefore, we measure the memorability of gen-

erated ads using two approaches: Henry-Oracle and perplexity on ground truth

memorable ads in LAMDA.

In evaluation using Henry-Oracle, the expectation is that the generated ad’s

memorability should be at par with high-memorable samples (score>65) and bet-

ter than the low (score<44) and medium memorability samples (44<score<65).

Perplexity on ground truth low and high memorable ads evaluates the generative

model’s propensity to generate more memorable content. A stronger model should

have a lower perplexity on more memorable content than less memorable content

(refer §5.1.11 for details on perplexity evaluation).

‖The Henry model trained on the complete (test+train sets) LAMBDA.
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Model # Params Training Dataset High Quality
Mem Samples ∆ Memorability Ad-Quality

Low Med High Avg GPT-4
Consistency

GPT-4
Preference

Human-
Preference

GPT-4 5-shot >175B ICL LAMBDAHigh 5 +48 +18 -13 +17.6 7.73 91.3% 41.8%
GPT-3.5 5-shot 175B ICL LAMBDAHigh 5 +35 +5 -31 +3 7.17 84.2% -
GPT-3.5 3-shot 175B ICL LAMBDAHigh 3 +34 +6 -32 +2.6 6.98 83.1% -
Henry-SEED 13B SEED UltraLAMBDA 800k +41 +18 +1 +20 7.34 74.7% -

Henry-SEED 13B SEED UltraLAMBDA + LAMBDAHigh 820k +89 +31 +12 +44 7.44 85.6% 60.48%
Henry-SEED 13B SEED LAMBDAHigh 650 +78 +13 +1 +30.6 5.03 63.9% -
Henry-SEED 13B SEED UltraLAMBDA 50k +12 +9 -6 +5 6.01 66.1% -
Henry-SEED 13B SEED UltraLAMBDA (w/o high-mem filtering) 2M +19 +5 -45 -7 6.73 71.1% -

Table 5.3: Ad Generation: Results of Henry-SEED compared with in-context-learning (ICL) GPT-3.5, 4 on Ad-Memorability and Ad
generation quality. See §5.1.5 for details of the metrics computed. We see that Henry-SEED generated ads are more memorable
than ads generated using 15x larger GPT-3.5 and GPT-4. We test ad quality using GPT-4 as judge and then test the top-two
models using human annotators. GPT-4 as a judge rates GPT-4 and Henry-SEED as the top two models. Subsequently, we ask
humans to select between the original and generated ad stories. We observed that human annotators preferred Henry-SEED ads
more than the original ads 3/5 times, while GPT-4 generated ads are preferred 2/5 times over the original ads. Further, we note
that an increase in the amount of training data for Henry-SEED increases its performance across all metrics. Figs. 5.4-5.6 and
Listings 5.1-5.10 contain some qualitative samples generated using Henry-SEED.
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Using GPT-4 as judge, we test two ad-quality metrics: consistency and prefer-

ence. Consistency assesses how coherent the generated story is—both internally

(e.g., between dialogues) and in relation to the provided brand information and

title (Listing 5.12). Preference measures how often GPT-4 favors the generated

story over the original (Listing 5.11). In human evaluation, we ask human annota-

tors to select between the generated and the original ad stories without revealing

which is which (§5.1.10). This evaluation is conducted with 20 non-expert anno-

tators and 3 ad industry experts with over 5 years of experience in the creative

industry. The expectation is that the quality of synthetic ads should be compa-

rable to that of the original ads.

5.1.5.2 Results

We compare the following models to generate memorable ads: LLaVA model

trained on UltraLAMBDA (we refer to this model as Henry-SEED), GPT-3.5,

and GPT-4. GPT-3.5 and 4 are LLMs with strong generative capabilities with

high performance across many benchmarks (Brown et al., 2020).

Evaluation of memorability of the generated ads: Table 5.3 compares

models based on the average increase in memorability, as evaluated by the Oracle

model trained on both the train and test sets. Table 5.4 shows the perplexity

of LLaVA before and after training on UltraLAMBDA. Notably, Henry-SEED,

trained on UltraLAMBDA, significantly improves memorability scores across all

bins (Low, Medium, and High). Although GPT-4 and GPT-3.5—despite being

15x larger—improve the memorability of ads with initially low ratings, they de-

crease the memorability of ads with high ratings. Table 5.4 further contrasts

untrained and SEED-trained LLaVA, revealing that the SEED method greatly

reduces perplexity on high-memorability samples. While LLaVA originally had

higher perplexity for high-memorable samples, training on UltraLAMBDA shifts

this trend: perplexity increases for low-memorability samples and decreases for

high-memorability ones. This suggests the SEED approach enhances the likeli-

hood of generating high-memorable ads while reducing the likelihood of producing

low-memorable ones.

Importantly, UltraLAMBDA contains no overlap with LAMBDA. Neither Henry

209



"What's up? Need help with
physics?" "I'm here to help. I'm Brainly."

"I'm here to help you keep
learning. Try it out"

"I'll find the information and show
you the steps."

"When you have questions, just ask"

"So you can learn from the process and
feel good about learning"

Figure 5.4: Henry-SEED Prompt: Generate the detailed description of a 30-second
memorable advertisement titled ”Brainly Keep Learning 30sec Final
16x9” for the brand Brainly. Link to the original ad: https://www.yo
utube.com/watch?v=kytRXyWXivU Original Memorability score: 85.
Memorability score of Generated Ad: 99.

(used to label memorability for UltraLAMBDA) nor Henry-SEED (trained on Ul-

traLAMBDA) was trained on LAMBDA’s test-set ads. Despite this, Henry-SEED

demonstrates significant improvement in performance compared to GPT-3.5 and

GPT-4.

Evaluation of the quality of the generated ads: When comparing ad

quality, we find that while GPT-4 favors its own generated ads 91.3% of the

time, Henry-SEED follows closely with an 85.6% preference score. In human

evaluations, where annotators were asked to choose between original and generated

ads based on quality, Henry-SEED’s ads were preferred around 60% of the time—

approximately 20% more than GPT-4’s ads.

Qualitative Results: Figs. 5.4-5.6 and Listings 5.1-5.10 show some randomly

sampled ad storyboards generated by Henry-SEED and Sec. 5.1.10.1 contains some

expert comments over the generated ad storyboards. These qualitative examples

are generated by prompting Adobe Firefly (Adobe, 2024) with the scene descrip-

tions provided by Henry-SEED**, followed by pasting OCR from the Henry-SEED
**Note: We do not make any changes to Henry-SEED’s generation for the voice-over or the

scene descriptions before passing it to Firefly.

210

https://www.youtube.com/watch?v=kytRXyWXivU
https://www.youtube.com/watch?v=kytRXyWXivU


generated verbalization on top of the generated images. We provide visualizations

for easier understanding (Figs. 5.4-5.6), along with the raw generations (List-

ings 5.1-5.10).

We also run some ablation studies to find the impact of the amount of data

(Fig. 5.11) and the impact of behavior simulation and content simulation tasks

(Table 5.8) on ad quality and memorability. A few trends are noticeable. Perfor-

mance increases as the amount of data increases. Interestingly, the performance

converges very slowly with the amount of increase in data. We test the per-

formance in three conditions: brand-split, time-split, and random-split. In the

brand-split testing, we leave some randomly chosen brands out of training and

only test on them. For the time-split testing, we put a cutoff time; we train our

model before that cutoff time and test on ads after that time. For the random-

split testing, we test on randomly selected advertisements. Brand-split performs

worse than time-split testing, indicating that brands have a higher contribution

to determining memorability. This trend is observed only in ad memorability but

not in ad quality.

Ablation: We also test the impact of various subsets of UltraLAMBDA on the

memorability of the ads generated by Henry-SEED. Table 5.3 shows the results.

It can be seen that adding the high memorable samples from LAMBDA train set,

increases the memorability of generated ads substantially. We also train LLaVA

on the complete set of 2 million UltraLAMBDA ads without filtering it via Henry

assigned memory labels. Interestingly, this model, while trained on 2.5 times more

data than UltraLAMBDA filtered via Henry, has lesser average memorability than

it.

Model Training Low(↑) Medium High(↓)
LLaVA 0-shot 5.08 5.11 5.39

Henry-SEED LAMBDAHIGH 6.07 3.01 2.17
Henry-SEED UltraLAMBDA 7.09 4.51 2.35

Table 5.4: Ad Generation: Perplexity comparison (refer §5.1.11) of LLaVA and
Henry-SEED on low/medium/high memorable ads from LAMBDA test
set. We see that untrained LLaVA does not favor memorable ads.
Further, we note that when synthetic data is included during training,
the ratio of perplexity on low and high ads grows from 2.79 to 3.01.
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5.1.6 Conclusion

In this work, we presented the first large-scale ad memorability study and dataset,

LAMBDA, measuring long-term memorability. Despite the importance that ad-

vertising plays in day-to-day, no large-scale works have tried to model long-term

memorability on this multimodal content type. We then presented our model,

Henry, which incorporates world and cognitive knowledge to understand the se-

mantics of the ad content, brand, and experimental protocol, ultimately con-

solidating them together to predict memorability. Henry, when tested on eight

datasets across the literature, spanning both short-term and long-term memora-

bility, gets state-of-the-art performance on all of them. Next, we propose the task

of generating memorable ads and release a large scale dataset UltraLAMBDA,

consisting of 5 million ads for this task. We propose a new method based on self-

rewarding language model to generate more memorable ads, which we call, SEED.

Finetuning Henry using SEED results in an improvement of over 44% in content

memorability.

5.1.7 Generation of Ads using Henry-SEED

Henry-SEED takes as input a prompt consisting of the title of the ad to be gen-

erated and the brand name and generates the scene-by-scene verbalization of cog-

nitive and visual concepts and voiceover. Listings 5.1-5.10 gives the input and

output of a few randomly chosen examples of advertisements generated by Henry-

SEED are shown below. Using the output script generated by Henry-SEED, we

next prompt Adobe Firefly (Adobe, 2024) with Henry-SEED’s output to generate

the visualization. Next, OCR from the Henry-SEED generated verbalization is

put on top of the generated images manually. We provide visualizations for easier

understanding (Figs. 5.4-5.6), along with the raw generations (Listings 5.1-5.10).

Listing 5.1: Advertisement generated by Henry-SEED for the Costco Ad. Original

Ad: https://www.youtube.com/watch?v=uT72lJhUUS0
Input Title: ”Maytag Overnight Wash and Dry” for the brand Costco

Generated Ad: ”The ad is shot in landscape orientation, at a medium pace.

Scene 1: The scene shows a person standing in front of a washer and dryer
Emotions: comforting, comfortable
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"The New York Times is shining a light on women's
rights. For 150 years, The Times has held those in

power accountable."

"From the fight for pay equality to the battle against
harassment"

"The Times is telling the stories of women around the
world. Join us in supporting our women."

"Subscribe to The New York Times.
The truth has a voice."

Figure 5.5: Henry-SEED Prompt: Generate the detailed description of a 50 second
memorable advertisement titled ”Shining a Light on Women’s Rights |
The Truth Has a Voice | The New York Times” for the brand The New
York Times Link to the original ad: https://www.youtube.com/wa
tch?v=bPblzhUzTeg Original memorability score: 65. Memorability
score of Generated Ad: 91.
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"Maytag has taken the laundry room by
storm with their overnight wash and dry."

"Never fight over the laundry room again. 
Get a Maytag and enjoy the luxury of time."

"Imagine going to bed with dirty clothes and  waking up to a
fresh, clean load. All without leaving the house. It's like

having your  own personal laundry assistant."

"Maytag, Enjoy the luxury of time"

"All without leaving the house. It's like having your own personal laundry assistant."

Figure 5.6: Henry-SEED Prompt: Generate the detailed description of a 18 second
memorable advertisement titled ”Maytag Overnight Wash and Dry”
for the brand Costco. Link to the original ad: https://www.yout
ube.com/watch?v=uT72lJhUUS0 Original memorability score: 76.
Memorability score of the generated Ad: 83
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Tags: appliance, laundry, laundry room, man
Voiceover: ”Maytag has taken the laundry room by storm with their overnight wash and dry.”
Colors: Gray, Off_White, Silver, White, Black, Dark_Gray

Scene 2: The scene shows a person lying on a bed pressing a button on a cell phone
Emotions: gift, birthday, holiday
Tags: button, catch, smartphone, hand
Voiceover: ”Imagine going to bed with dirty clothes and waking up to a fresh, clean load. All without leaving the house. It's like

having your own personal laundry assistant.”
Colors: Gray, Silver, Black, Dark_Gray, Dark_Brown

Scene 3: The scene shows a man and woman embracing while a washer and dryer are in the background
Emotions: love, happiness, togetherness
Tags: couple, hug, laundry, laundry room
Voiceover: ”Never fight over the laundry room again.”
Colors: Gray, Off_White, Silver, White,Black, Dark_Gray

Scene 4: The scene shows a logo of Maytag
Emotions: trust, confidence
Tags: logo, Maytag
Voiceover: ”Get a Maytag and enjoy the luxury of time.”
Colors: Off_White, Silver, White, Black, Dark_Gray, Gray
”

Listing 5.2: Advertisement generated by Henry-SEED for the Pruduential Finan-

cial Ad. Original Ad: https://www.youtube.com/watch?v=JPfi0P

-0nwU
Input Title: ”Financial Professional Tips: Planning for Your Own Care” for the brand Prudential Financial

Generated Ad: ”The ad is shot in landscape orientation, at a low pace.

Scene 1: The scene shows a woman looking thoughtfully at a laptop on her desk
Emotions: concern and contemplation
Tags: computer, laptop, office, woman
Colors: Gray, Dark_Blue

Scene 2: The scene shows the same woman now with a slight frown as she examines papers that appear to be medical bills
Emotions: worry and realization
Tags: bills, healthcare, paperwork, desk
Voiceover: ”Long−Term Care is one of the most important issues in financial planning, but it's not always easy to talk about.”
Colors: Gray, Dark_Blue

Scene 3: The scene shows the woman engaging in a conversation with a financial professional
Emotions: engagement and interest
Tags: consultation, financial advisor, discussion, office
Voiceover: ”As a Financial Professional, I can help you evaluate your options and determine how much you may need to set

aside each month.”
Colors: Olive, Gray

Scene 4: The scene shows the woman in deep thought, looking out of a window while holding a pen and notepad, suggesting
planning and reflection

Emotions: contemplation and seriousness
Tags: planning, reflection, window, notepad
Colors: Sky_Blue, Light_Gray

Scene 5: The scene transitions back to show the woman nodding in understanding as she listens to the financial professional,
visibly gaining confidence

Emotions: comprehension and confidence
Tags: financial professional, office, learning, agreement
Voiceover: ”Most people believe that they can rely on Medicare to pay for their long−term care expenses. But the truth is,

Medicare typically only covers about 65% of the cost of a nursing home stay and only about 32% of the cost of an assisted
living stay.”

Colors: Gray, Dark_Blue

Scene 6: The scene shows the woman now jotting down notes actively, with a look of determination on her face
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Emotions: determination and proactivity
Tags: planning, notetaking, strategy, office
Voiceover: ”So if you're a typical American, you'll need about $100,000 to cover the remaining costs of long−term care.”
Colors: Gray, Dark_Blue

Scene 7: The scene shifts to the woman shaking hands with the financial professional, symbolizing a plan set in motion
Emotions: satisfaction and trust
Tags: handshake, agreement, financial planning, commitment
Colors: Gray, Dark_Blue

Scene 8: The scene cuts to the woman now at home, relaxed and smiling, speaking on the phone, perhaps sharing her relief and
positive steps taken with a loved one

Emotions: relief and happiness
Tags: home, communication, personal life, reassurance
Voiceover: ”Let's talk about a plan for your own care.”
Colors: Cream, Soft_Green

Scene 9: The final scene zooms out to a serene image of the woman walking in a park, symbolizing peace of mind about her
future

Emotions: contentment and peace
Tags: park, walking, future, peace of mind”
Colors: Sky_Blue, Green

Listing 5.3: Advertisement generated by Henry-SEED for an Adidas Ad. Original

Ad: https://www.youtube.com/watch?v=fujboh-W7Sk
Input Title: ”I'M POSSIBLE | IMPOSSIBLE IS NOTHING | Adidas” for the brand Adidas

Generated Ad: ”The ad is shot in landscape orientation, at a medium pace.

Scene 1: The scene shows a man facing a rock climbing wall, poised to start his ascent
Emotions: anticipation and focus
Tags: athletic, climb, climber, rock
Voiceover: ”What is possible is up to you.”
Colors: Gray, Dark_Brown

Scene 2: The scene shows a man as he begins to climb, gripping the rock tightly
Emotions: determination and strain
Tags: athletic, climb, climber, hand
Voiceover: ”Don't let anyone tell you otherwise.”
Colors: Dark_Gray, Dark_Brown

Scene 3: The scene shows the man midway up the rock wall, reaching for a distant handhold
Emotions: perseverance and challenge
Tags: athletic, climb, climber, hand
Colors: Black, Dark_Gray

Scene 4: The scene captures a moment where the man slips but regains his grip on the rock face, muscles tensing
Emotions: tension and danger
Tags: athletic, climb, climber, hand
Colors: Dark_Gray, Dark_Brown

Scene 5: The scene shows the man pausing to chalk his hands, his breath visible in the cool air
Emotions: calm and preparation
Tags: athletic, chalk, climb, climber
Colors: Gray, Dark_Brown

Scene 6: The scene shows the man navigating a particularly difficult part of the climb, his movements precise and deliberate
Emotions: concentration and determination
Tags: athletic, climb, climber, hand
Colors: Black, Dark_Gray

Scene 7: The scene shows the climber's face, sweat beading on his forehead, reflecting the intensity of his effort
Emotions: grit and resolve
Tags: athletic, climb, climber, determination
Colors: Dark_Gray, Dark_Brown
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Scene 8: The scene shows the man reaching for the final ledge, the clear sky behind him signaling the nearing end of his ascent
Emotions: anticipation and effort
Tags: athletic, climb, climber, hand
Voiceover: ”Impossible is not an obstacle.”
Colors: Dark_Gray, Gray, Dark_Brown, Blue

Scene 9: The scene shows the man pulling himself onto the summit, his body silhouetted against the sky
Emotions: triumph and exhilaration
Tags: athletic, climb, climber, hand
Voiceover: ”It's a chance to prove them wrong.”
Colors: Dark_Gray, Dark_Brown, Blue

Scene 10: The scene shows the man standing on top of the rock with his arms raised in victory, overlooking the landscape below
Emotions: achievement and elation
Tags: athletic, arms up, climb, climber”
Colors: Dark_Gray, Dark_Brown

Listing 5.4: Advertisement generated by Henry-SEED for an Amazon ad. Original

Ad: https://www.youtube.com/watch?v=rcFTqs-zSH4

Input Title: ”Alexa Auto, Listening to Audiobooks” for the brand Amazon

Generated Ad: ”The ad is shot in landscape orientation, at a low pace.

Scene 1: The scene shows a car driving down a country road near a mountain house
Emotions: anticipation, freedom
Tags: blue, car, drive, house
Colors: White, Lavender, Dark_Blue,Turquoise, Black

Scene 2: The scene shows an image of a car approaching a large sign above the road, signaling the start of the highway
Emotions: curiosity, readiness
Tags: car, drive, road sign, highway
Voiceover: ”You just pulled onto the highway”
Colors: White, Lavender,Turquoise, Gray

Scene 3: The scene shows an in−car view with a driver's hands on the steering wheel, a smartphone mounted on the dashboard
displaying the Amazon Music app

Emotions: concentration, engagement
Tags: car interior, hands, smartphone, technology
Voiceover: ” but you can't remember the name of that band that's been stuck in your head all morning.”
Colors: White, Dark_Blue,Black, Gray

Scene 4: The scene shows the driver speaking to Alexa through the car's infotainment system, the display lighting up in
response

Emotions: interaction, ease
Tags: car interior, voice command, infotainment system
Voiceover: ”With Alexa and Amazon Music, you don't have to remember.Just ask, ”Alexa, play the Beatles.”
Colors: White, Lavender, Dark_Blue, Black

Scene 5: The scene shows the car passing through a landscape with rolling hills and the sun beginning to set in the background
Emotions: satisfaction, serenity
Tags: car, drive, hills, sunset
Colors: White, Lavender, Turquoise, Dark_Blue

Scene 6: The final scene shows the vehicle driving into the horizon, as the iconic music of the Beatles fills the car's interior
Emotions: fulfillment, joy
Tags: car, drive, horizon, music”
Colors: White, Lavender, Orange, Dark_Blue

Listing 5.5: Advertisement generated by Henry-SEED for an Gatorade ad. Origi-

nal Ad: https://www.youtube.com/watch?v=BKPQkjRF4yY
Input Title: ”Gatorade | Make Your Own Footsteps with Suni Lee” for the brand Gatorade

Generated Ad: ”The ad is shot in landscape orientation, at a medium pace.
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Scene 1: The scene shows Sunisa Manado standing in front of her house
Emotions: determination, brave, confident, persistence, courage
Tags: athletic, face, girl, muscle
Voiceover: ”I'm Sunisa Manado, but you can call me Sunisa. And I'm going to show you how I stay motivated. Let's go! This is

my neighborhood. I'm going to take you through my favorite spots. There's my house right there.”
Colors: Dark_Brown, Black, Brown, Tan

Scene 2: The scene shows Sunisa Manado performing a handstand in the park
Emotions: achievement, determination, persistence, commitment, success
Tags: balance, gymnast, handstand, girl
Voiceover: ”And this is the park where I get so much done. This is the park where I train.”
Colors: Dark_Brown, Dark_Blue, Purple, Gray

Scene 3: The scene shows Sunisa Manado doing a flip on the balance beam
Emotions: brave, courage, determination, persistence, inspiration
Tags: gymnast, flip, beam, girl
Voiceover: ”Being an athlete takes a lot of hard work and determination.”
Colors: Dark_Brown, Dark_Blue, Purple, Gray

Scene 4: The scene shows Sunisa Manado in a powerful pose in her pink sports bra and leotard
Emotions: determination, brave, courage, persistence, inspiration
Tags: athletic, face, girl, gymnast
Colors: Dark_Brown, Dark_Blue, Purple, Gray

Scene 5: The scene shows Sunisa Manado lifting herself on the parallel bars
Emotions: achievement, persistence, determination, courage, commitment
Tags: gymnast, lift, bars, girl
Voiceover: ”And being an athlete also means that you have to have good nutrition.”
Colors: Dark_Brown, Dark_Blue, Purple, Gray

Scene 6: The scene shows Sunisa Manado practicing her routine on the floor of the park
Emotions: determination, persistence, inspiration, commitment, discipline
Tags: floor, gymnast, routine, girl
Colors: Dark_Brown, Dark_Blue, Purple, Gray

Scene 7: The scene shows Sunisa Manado spinning on the balance beam
Emotions: success, brave, determination, precision, focus
Tags: beam, spin, gymnast, girl
Colors: Dark_Brown, Dark_Blue, Purple, Gray

Scene 8: The scene shows Sunisa Manado holding a bottle of Gatorade, rehydrating after her practice
Emotions: refreshed, healthy, satisfaction, wellbeing, recovery
Tags: athlete, drink, Gatorade, health
Voiceover: ”That's why I choose to fuel up with Gatorade. You need to have that energy, especially during my toughest training

.”
Colors: Black, Dark_Green, Dark_Gray, Gray

Scene 9: The scene shows Sunisa Manado smiling towards the camera with a sense of pride and accomplishment
Emotions: joy, confidence, pride, optimism, accomplishment
Tags: face, smile, girl, gymnast
Voiceover: ”Gatorade helps replenish what I've lost and helps keep me going.”
Colors: Black, Dark_Green, Dark_Gray, Gray

Scene 10: The scene shows Sunisa Manado walking away from the park, as the sun sets, symbolizing the end of a day's hard
work

Emotions: contemplation, fulfillment, anticipation, resilience, hope
Tags: sunset, walk, reflection, girl
Voiceover: ”I'm going to make my own footsteps. Follow your dreams, but don't forget to chase your greatness.”
Colors: Black, Dark_Green, Dark_Gray, Gray”

Listing 5.6: Advertisement generated by Henry-SEED for a Rolex ad. Original

Ad: https://www.youtube.com/watch?v=vA-Lxmh1MdQ
Input Title: ”Rolesor A Meeting of Metals” for the brand Rolex

Generated Ad: ”The ad is shot in landscape orientation, at a low pace.”

Scene 1: The scene shows a close up of a watch that is on a wrist
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Emotions: anticipation, luxury, elegance
Tags: dial, gold, watch
Colors: Dark_Brown, Brown, Black, Khaki

Scene 2: The scene shows a gold and silver watch sitting on a table, reflecting soft light
Emotions: sophistication, status, success
Tags: dial, gold, watch
Colors: Brown, Dark_Brown, Khaki, Black

Scene 3: The scene shows a person's hands elegantly wrapping the gold and silver watch in delicate gift paper
Emotions: care, generosity, surprise
Tags: wrapping, gift, luxury
Colors: Brown, Khaki, Gold, White

Scene 4: The scene shows a recipient's joyous reaction as they receive the watch as a gift at a celebratory gathering
Emotions: happiness, gratitude, celebration
Tags: emotion, celebration, gift
Colors: Gold, Silver, Cream, Warm hues, Soft lighting

Scene 5: The scene shows the watch being worn at an elegant event, the gold and silver glinting under ambient lighting
Emotions: pride, accomplishment, refinement
Tags: elegance, luxury, watch
Colors: Gold, Silver, Black, Soft lighting, Dark hues

Listing 5.7: Advertisement generated by Henry-SEED for an NVIDIA ad. Original

Ad: https://www.youtube.com/watch?v=HnaOhOJ6AcM
Input Title: ”Pac Man 256 on NVIDIA SHIELD” for the brand Nvidia

Generated Ad: ”The ad is shot in landscape orientation, at a medium pace. ”

Scene 1: The scene shows a black and white logo.
Emotions: danger, tough
Tags: brand, logo
The text shown in the scene is 'SHIELD'

Colors: Black, White, Gray

Scene 2: The scene shows a black screen with a red light on it
Emotions: danger, tough
Tags: brand, logo, text
The text shown in the scene is 'SHIELD'

Colors: Black, White, Red

Scene 3: The scene shows a computer screen showing a game of Pac−Man
Emotions: nostalgia, fun
Tags: arcade, arcade machine, game, Pac−Man
The text shown in the scene is 'HIGH SCORE'

Colors: Cyan, Yellow, Gray, Dark Green, Red

Scene 4: The scene shows a video game character navigating a maze filled with obstacles
Emotions: excitement, challenge
Tags: arcade, character, game, maze
The text shown in the scene is 'LEVEL UP'

Colors: Cyan, Red, Pink, Orange, Gray

Scene 5: The scene shows a video game with a racing theme, cars zooming on the track
Emotions: thrill, speed
Tags: racing, cars, game, screenshot
The text shown in the scene is 'NEW RECORD'

Colors: Red, Yellow, Blue, Gray, Black

Scene 6: The scene shows a strategy video game with a detailed world map
Emotions: focus, strategy
Tags: strategy game, world map, empire, video game
The text shown in the scene is 'EXPAND YOUR EMPIRE'

Colors: Green, Brown, Blue, White, Tan

Scene 7: The scene shows a futuristic virtual reality game with immersive graphics
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Emotions: amazement, innovation
Tags: VR, virtual reality, future, game
The text shown in the scene is 'ENTER NEW WORLDS'

Colors: Neon Blue, Neon Green, Black, Dark Blue

Scene 8: The scene shows a family gathered around playing a multiplayer video game, laughing and enjoying
Emotions: joy, togetherness
Tags: family, multiplayer, game, living room
The text shown in the scene is 'PLAY TOGETHER'

Colors: Multi−colored, Warm Hues

Scene 9: The scene transitions to a player wearing headphones, deeply concentrated in an esports competition
Emotions: determination, competition
Tags: esports, competition, gamer, video game
The text shown in the scene is 'RISE TO THE CHALLENGE'

Colors: Black, Neon, Dark, Spotlights

Scene 10: The scene closes with the NVIDIA SHIELD logo emerging brightly on the screen
Emotions: empowerment, assurance
Tags: brand, logo, closing
The text shown in the scene is 'NVIDIA. SHIELD − Game Your Way'

Colors: Red, White, Black

Listing 5.8: Advertisement generated by Henry-SEED for a Zillow ad. Original

Ad: https://www.youtube.com/watch?v=P6gydrvTkaA
Input Title: ”Find It, Tour It and Own It With Zillow (:06)” for the brand Zillow

Generated Ad: ”The ad is shot in landscape orientation, at a medium pace.

Scene 1: The scene shows a person holding a cell phone with their hand.
Emotions: achievement, ambition
Tags: catch, smartphone, hand, person, phone, screen, text message, woman
Colors: Gray, Dark_Blue, Dark_Brown, Dark_Pink, Off_White

Scene 2: The scene shows a woman in a sweater looking at a cell phone.
Emotions: happy, smile
Tags: smartphone, earphone, girl, person, smile, woman
Colors: Gray, Dark_Brown, Dark_Pink, Dark_Blue

Scene 3: The scene shows a woman looking at a phone with a map on it.
Emotions: confident, smiling
Tags: catch, smartphone, earphone, girl, person, phone, stand, talk, woman
Colors: Gray, Dark_Brown, Dark_Pink, Dark_Blue

Scene 4: The scene shows a woman looking at a cell phone with a real estate app on it.
Emotions: togetherness, happiness
Tags: smartphone, earphone, girl, person, woman
Colors: Gray, Dark_Brown, Dark_Pink, Dark_Blue

Scene 5: The scene shows a woman looking at a cell phone with a real estate app displayed.
Emotions: happy, smiling
Tags: smartphone, earphone, girl, person, woman
Colors: Gray, Dark_Brown, Dark_Pink, Dark_Blue

Scene 6: The scene shows a woman using a cell phone to speak with an agent.
Emotions: confident, happy
Tags: smartphone, earphone, girl, person, talk, woman
Colors: Gray, Dark_Brown, Dark_Pink, Dark_Blue
Voiceover: ”Getting the perfect home is a journey, so we help you find it, tour it, and own it.”

Scene 7: The scene shows a woman completing a transaction on a cell phone.
Emotions: achievement, satisfied
Tags: smartphone, earphone, girl, person, woman
Colors: Gray, Dark_Brown, Dark_Pink, Dark_Blue”
Voiceover: ”For moving made simple, there's no place like Zillow”
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Listing 5.9: Advertisement generated by Henry-SEED for a Kroger ad. Original

Ad: https://www.youtube.com/watch?v=SqwqI01q3fA
Input Title: ”How to Make Taco Seasoning | Kroger Recipes | Kroger” for the brand Kroger

Generated Ad: ”The ad is shot in landscape orientation, at a low pace.

Scene 1: The scene shows a person pouring chipotle adobo sauce into a glass jar.
Emotions: care, comfort
Tags: bottle, can, container, hand, food, person, jar, liquid, pepper, pour, red, sauce, tomato sauce, tin, tray, woman
Colors: Black, Gray, Dark_Brown, Maroon, Dark_Red
Voiceover: ”The audio in the ad says Taco seasoning is one of those spices that everyone loves on their food. It's so delicious and

it's so easy to make.”

Scene 2: The scene shows a woman in a red sweater adding ground cumin to the mix.
Emotions: anticipation, focus
Tags: blender, container, food, hand, person, ingredient, measuring cup, spice, woman
Voiceover: ”All you have to do is get your chopstick and add some of the garlic and some of the onion and some of the cumin”
Colors: Black, Gray, Dark_Brown, Maroon, Dark_Red

Scene 3: The scene shows the addition of chili powder to the seasoning mix.
Emotions: precision, satisfaction
Tags: blender, container, food, food processor, hand, person, ingredient, mixture, spice, woman
Voiceover: ” and some of the dried chilies and some of the oregano and some of the salt”
Colors: Black, Gray, Dark_Brown, Dark_Pink, Maroon

Scene 4: The scene shows the woman sprinkling crushed red pepper into the mix.
Emotions: excitement, zeal
Tags: blender, container, food, food processor, hand, person, ingredient, measuring cup, mixture, spice, woman
Voiceover: ”and some of the paprika and some of the pepper and just give it a little bit of a squeeze”
Colors: Black, Gray, Dark_Brown, Maroon, Dark_Red

Scene 5: The scene shows the woman measuring and adding ground oregano to the seasoning mix.
Emotions: happiness, creativity
Tags: blender, container, food, food processor, hand, person, ingredient, measuring cup, mixture, spice, woman
Colors: Black, Gray, Dark_Brown, Maroon, Dark_Red

Scene 6: The scene shows the final steps of making the taco seasoning mix, with the woman adding garlic powder and onion
powder.

Emotions: accomplishment, pride
Tags: blender, container, food, food processor, hand, person, ingredient, mixture, spice, woman
Voiceover: ”You're going to taste it, so don't be afraid to add more or less of any of these ingredients, depending on how spicy

or how flavorful you want your taco seasoning to be.”
Colors: Black, Gray, Dark_Brown, Maroon, Dark_Red”

Listing 5.10: Advertisement generated by Henry-SEED for a Publix ad. Original

Ad: https://www.youtube.com/watch?v=HH0VWvs-cFg
Input Title: ”GreenWise Ice Cream Scoop from Publix” for the brand Publix Supermarkets

Generated Ad: ”The ad is shot in landscape orientation, at a low pace.

Scene 1: The scene shows a woman standing in front of a refrigerator.
Emotions: anticipation, satisfaction
Tags: beverage, bottle, catch, doorway, drink, fill, girl, home appliance, juice, laugh, pour, refrigerator, shirt, stand, woman
Voiceover: ”Greenwise, the better energy choice from Publix.”
Colors: Black, Gray, Dark_Gray, Dark_Brown, Silver

Scene 2: The scene shows a woman holding a roll of Greenwise ice cream in her hand.
Emotions: curiosity, interest
Tags: bottle, catch, hand, woman
Voiceover: ” All the deliciousness of ice cream, a fraction of the calories. And now it comes in a roll.”
Colors: Black, Gray, Dark_Gray, Dark_Brown

Scene 3: The scene shows the woman as she easily scoops the ice cream onto a plate, displaying the convenience of the new roll
format.

Emotions: ease, delight
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Figure 5.7: Word Cloud (resembling Henry) for the GPT-4 reasoning on the 75/88
generations where it rates Henry-SEED Generated Ads to be better
than the Original.

Tags: plate, roll, scoop, serve, woman
Voiceover: ” So you can easily scoop and serve exactly what you need.”
Colors: Black, Gray, Dark_Gray, Dark_Brown

Scene 4: The scene shows the woman enjoying a bite of the Greenwise ice cream, her expression reflecting the product's
deliciousness.

Emotions: enjoyment, satisfaction
Tags: bite, enjoyment, ice cream, satisfaction, taste, woman
Voiceover: ”It's a win−win. Learn more at publix.com.”
Colors: Black, Gray, Dark_Gray, Dark_Brown”

5.1.8 Extraction And Use Of Cognitive And Perceptual

Signals In Advertisements
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Image Semantic
Category

Verbalization Semantic
Cate-
gory

Verbalization

OCR The text shown in the scene is
“Adidas”.

Clutter The clutter in the scene is low.

ASR The audio in the scene is “To
take hold of the world’s spotlight
overnight”.

Photo
Style

The photography style of the
scene is commercial photogra-
phy.

Human
Presence

The scene has 1 person with
prominent face.

Emotion The emotion of the scene is am-
bitious, determined.

Caption The scene shows a young woman
sitting in a glass door looking
out.

AestheticsThe image has medium aesthetic
value.

Colors The foreground colors of the
scene are Black, Dark Brown,
Dark Blue, Dark Gray, Mud
Green and the background col-
ors are Dark Blue, Black, Dark
Brown. The dominant tone of
the scene is neutral.

Object
Tags

This scene is categorized by the
tags: person, woman, blazer,
facing, template, fashion, street
fashion, cold, client, cardigan,
sweat.

Audio
Type

The scene has music and speech. Logo
Pres-
ence

There is a logo in the scene.

Table 5.5: To augment the scene understanding of LLM, we verbalize video scenes and images using a diverse set of cognitive and perception
tools and pass it to the LLM in the format shown in the table. For image memorability datasets, we use the following semantic
categories: caption, color, photo style, emotion, clutter, human presence, object tags, OCR, and aesthetics. For video scene
memorability datasets, we use the following semantic categories: caption, color, emotion, human presence, object tags, ASR, OCR,
Audio-type, Logo-presence. We use the following models to extract the features: OCR (Du et al., 2020), clutter (Khurana et al.,
2023), ASR (Radford et al., 2022), Photo style (Li et al., 2023b), human presence (Liu et al., 2023c), emotion (Singh et al., 2024a),
caption (Li et al., 2023b), aesthetics (Ke et al., 2023), colors (Qin et al., 2020a), object tags (Zhang et al., 2023c), audio-type
(Giannakopoulos, 2015), and logo presence (Zhang et al., 2023c). Black colored text is the verbalization template, and red text
indicates the model outputs.

223



Figure 5.8: Airbnb advertisement showing the visual concepts of two adults, and
the text “Our guest room is paying for our wedding”. “World knowl-
edge” captured by LLMs helps identify the two adults as partners, and
helps relate the text with the two adults and the Airbnb logo to infer
what the ad is talking about.

Figure 5.9: The top three rows show the keyframes from videos in our dataset,
LAMBDA, arranged from most to least memorable. The bottom two
rows show brands arranged from the most memorable brands to the
least.
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5.1.9 Ablation Experiments

Generalization
Type Train on Zero-shot

Testing Lamem Memcat SUN VideoMem Memento10k LAMBDA

Memory-type Short-term Long-term - - - 0.31 - 0.18
Memory-type Long-term Short-term 0.06 0.08 0.07 0.15 0.1 -
Modality Videos Images 0.55 0.65 0.55 - - -
Modality Images Videos - - - 0.44 0.54 0.09

Brands All except
20 brands

Left-out
20 brands - - - - - 0.42

Dataset All except
Memento Memento - - - - 0.59 -

Dataset All except
Memcat Memcat - 0.68 - - - -

Table 5.6: Ablation across data to understand how memorability prediction gen-
eralizes across the type of memory, datasets, modality (image/video),
and brands. The reported values are correlations between model and
human memorability scores. A few trends can be observed from the
table: (i) STM generalizes better on LTM in zero-shot than vice versa
(rows 1 and 2), (ii) Henry trained on either videos or images general-
izes to both (rows 3 and 4), (iii) There is a significant performance loss
in modeling memorability for brands not seen during training (row 5),
(iv) Zero-shot generalization to Memento (video) and Memcat (image)
is near to the current trained state of the art literature models on Me-
mento (Dumont et al., 2023) and Memcat (Hagen and Espeseth, 2023)
(rows 6 and 7).

Lamem Memcat VideoMem(ST) Memento10k VideoMem(LT) LAMBDA
Henry on
individual datasets 0.74 0.82 0.64 0.75 0.48 0.55

Henry vision only 0.20 0.17 0.17 0.21 0.15 0.11
Henry language only 0.51 0.53 0.42 0.54 0.37 0.44
Henry -object tags 0.67 0.71 0.57 0.69 0.46 0.52
Henry -colors 0.65 0.74 0.55 0.67 0.45 0.51
Henry -emotion 0.71 0.78 0.61 0.73 0.42 0.46
Henry -aesthetics 0.72 0.79 0.61 0.71 0.46 0.53
Henry -clutter 0.73 0.81 0.60 0.74 0.45 0.53
Henry -asr - - - - - 0.46
Henry -asr-emotion - - - - - 0.42
Henry on Silent Ads - - - - - 0.56
Henry on Ads
with audio - - - - - 0.52

Table 5.7: Ablation across architectural choices. “-” denotes non-speech dataset.
A few trends are visible from the table: (i) Despite having a vision
branch, object tags and colors have a net positive impact on the overall
performance (rows 2,3,4), (ii) For LTM (LAMBDA, VideoMem (LT)),
dropping cognitive features such as emotion, aesthetics, and clutter
cause a larger performance drop than dropping visual features such
as objects and colors. The trend is the opposite for STM (Lamem,
Memcat, VideoMem (ST), Memento10k).
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Figure 5.10: The graph shows the relationship of the year the ad is uploaded on
youtube vs the recall.

Task LAMBDA (ρ) ∆ Memorability
BS-only 0.541 -
CS-only - +28.41
BS+CS 0.547 +30.66

Table 5.8: Ablation on modeling behavior simulation (BS) or memorability pre-
diction and Content Simulation (CS) on memorable ad generation to-
gether. For memorability prediction, we again show the Spearman rank
correlation on the test set similar to Table 5.2; for generation, we mea-
sure the change in memorability according to Henry Oracle similar to
Table 5.3. We observe that mixing the two tasks together increases the
performance across both tasks.
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Figure 5.11: Graphs showing the importance of the amount of synthetic data on
(a) Ad memorability score and (b) Ad quality for the generated ads.
As we can see from the graphs, both the ad memorability and quality
increase with the increase in the amount of synthetic data.
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5.1.10 Questionnaire to Gather Human Preferences over

Generated Ads

Below is the web-based form used to annotate the human preferences between

the generated and original ad stories. Participants for this task were working

professionals in the software, marketing, advertising, and creative industries. Par-

ticipation was voluntary, and participants were invited to judge the efficacy of

generated advertisements. Participants had a general interest in the creative and

advertising industries and generative technologies; therefore, they were not inter-

ested in getting paid but rather in seeing and trying out the generative technology

stack. We have a roughly 65-35 distribution of males to females with the age range

between 22-50.

Instructions:

Shown next are 10 pairs of advertisements. Determine which ad within each pair is more effective based on the title, brand, and
scene−by−scene descriptions provided. You will also be expected to provide reasons for your choice wherever asked.

Question 1
Choose the advertisement you find more effective. Also provide reasons for your choice.

Title: Bike to Work Day at NVIDIA
Brand: Nvidia
Nvidia is a technology company focusing on graphics processing units (GPUs) for gaming, professional visualization, data

centers, and automotive markets, driving innovation in visual computing.

Advertisement A:

The ad is shot in landscape orientation, at a medium pace. The audio in the ad is silent.
Scene 1: The scene shows the camera takes a photo from the inside of the person on the bicycle
Colors: White, Dark_Pink, Olive, Gray, Pink, Dark_Brown
Emotions: danger, dangerous, warning
Tags: attach, bicycle, catch, smartphone

Scene 2: The scene shows the person riding a bicycle down the road
Colors: White, Dark_Gray, Mud_Green, Olive, Gray
Emotions: danger, quiet
Tags: bicycle, path, grass, motorbike
The text shown in the scene is 'NVIDIA'

Scene 3: The scene shows a man on a bike taking a ride
Colors: Off_White, Dark_Gray, Silver, Black, Gray
Emotions: danger, exciting, fun
Tags: bicycle, biker, bridge, hand
The text shown in the scene is 'DVIDIA'

Scene 4: The scene shows a bike rider going under a bridge under a road
Colors: Dark_Gray, Silver, Light_Green, Green, Olive, Gray, Bright_Green
Emotions: danger, dangerous, funny
Tags: bridge, car, curve, highway
The text shown in the scene is 'NVIDIA'

Scene 5: The scene shows a man riding a bicycle down a tree lined street
Colors: White, Dark_Gray, Mud_Green, Dark_Pink, Olive, Black, Gray
Emotions: thrill, adventure, romantic
Tags: bicycle, biker, hand, person
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The text shown in the scene is 'NVIDIA'

Scene 6: The scene shows a man riding on a bicycle down the street
Colors: Emerald, Dark_Gray, Silver, Light_Green, Olive, Gray
Emotions: funky, enjoyable
Tags: bicycle, hand, person, man
The text shown in the scene is 'NVIDIA'

Scene 7: The scene shows a closeup of someone riding a bicycle down a road
Colors: White, Dark_Gray, Silver, Dark_Pink, Olive, Gray
Emotions: danger, majestic
Tags: bicycle, bicycle helmet, biker, hand
The text shown in the scene is 'NVIDIA'

Scene 8: The scene shows a person is riding a bike on the side of the road
Colors: White, Dark_Gray, Mud_Green, Olive, Gray, Lavender
Emotions: enjoy, enjoyment
Tags: car, person, man, motorcycle
The text shown in the scene is 'NVIDIA'

Scene 9: The scene shows someone riding a bike in front of a small city
Colors: White, Dark_Gray, Olive, Black, Gray
Emotions: funky
Tags: bicycle, biker, bin, car
The text shown in the scene is 'NVIDIA'

Scene 10: The scene shows a cyclist riding his bike on a gravel road
Colors: White, Brown, Mud_Green, Olive, Gray, Dark_Brown, Cyan
Emotions: recreational, adventure
Tags: bicycle, biker, hand, person

Advertisement B:

The ad is shot in landscape orientation, at a low pace. The audio in the ad is silent.

Scene 1: The scene shows a man wearing a hard hat holding a bike helmet
Colors: Dark_Gray, Brown, Mud_Green, Cream, Olive, Black, Dark_Brown
Emotions: protective, protective
Tags: building, construction worker, hat, jumpsuit

Scene 2: The scene shows a man riding a bike on a path near a creek
Colors: Emerald, Dark_Gray, Mud_Green, Olive, Black, Dark_Brown
Emotions: recreational, relaxation
Tags: bicycle, bicycle helmet, biker, path

Scene 3: The scene shows a man holding a bike up while standing in front of a building
Colors: Dark_Gray, Brown, Mud_Green, Cream, Olive, Black, Dark_Brown
Emotions: pride, achievement
Tags: building, professional, hat, bicyclist

Scene 4: The scene shows a man riding a bike down a street with trees lining the road
Colors: Brown, Cream, Green, Olive, Dark_Brown
Emotions: cheery, freedom
Tags: bicycle, bicycle helmet, biker, man

Scene 5: The scene shows a man riding a bike down a street in front of a house
Colors: Dark_Gray, Mud_Green, Olive, Black, Dark_Brown
Emotions: cheery
Tags: bicycle, bicycle helmet, biker, car

Scene 6: The scene shows a closeup of the man's face as he adjusts his bike helmet, showcasing determination
Colors: Cream, Olive, Black, Gray, Dark_Brown
Emotions: determined, prepared
Tags: man, helmet, focus, detail

Scene 7: The scene shows the man holding his bike next to other cyclists at a traffic light, promoting community and
camaraderie

Colors: Mud_Green, Cream, Olive, Dark_Brown
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Emotions: community, anticipation
Tags: cyclists, traffic light, group, waiting

Scene 8: The scene shows the man arriving at work, parking his bike in a bike rack
Colors: Mud_Green, Cream, Olive
Emotions: satisfaction, accomplishment
Tags: office building, bike rack, arrival, work

Scene 9: The scene shows the man walking into the building, greeting colleagues who are also carrying bike helmets
Colors: White, Cream, Olive, Black, Gray
Emotions: friendly, inclusive
Tags: workplace, colleagues, greeting, professional attire

Scene 10: The scene shows the man at his workstation with a helmet on his desk, looking out the window at the sunny day,
hinting at the ride home

Colors: White, Cream, Olive, Gray
Emotions: thoughtful, accomplished
Tags: office, workstation, helmet, window

Select preferred advertisement:
Option 1: A
Option 2: B
Option 3: Both are equally effective

Give reasons for your choice:
______________________________________

5.1.10.1 Expert Feedback Collected For Generated Ads

1. Feedback for ad generation for the Maytag Ad shown in Fig 5.6
(a) Expert 1: ”I appreciate the prominent use of the logo in the adver-

tisement. Its placement towards the end, accompanied by a compelling
slogan, is in alignment with the brand’s advertising strategy.”

(b) Expert 2: ”In my opinion, the color scheme of the advertisement is
stunning. It complements the tone of the advertisement exceptionally
well.”

(c) Expert 3: ”The emotional portrayal in scene 2 could be enhanced. I
anticipated a sense of ’recreation’ and ’relaxation’ to be more effectively
conveyed.”

2. Feedback for ad generation for the New York Times Ad shown in Fig 5.5
(a) Expert 1: ”One noteworthy aspect in the generated ad description

is the concept of ’blocking.’ In the ad, the main actor is depicted
moving and protesting against various backdrops, including a static
background and a subtly shifting frame. This technique is reminiscent
of the famous concept utilized in cinematography. While this is not in
reflected in the image, I will attribute it to the image generation and
not the description generation.”

(b) Expert 2: ”I like the generated voiceover a lot in terms of story, but I
find it hard to fit over the scenes, perhaps this is because the generations
dont incorporate transitions/animations.”

(c) Expert 3: ”I find the overall generated story exceptional in terms
of its storytelling in a few ways. 1. The flow of the generated ad,
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A woman exploring nightlife, protesting, achieving, and nonetheless
standing defiant. 2. The slogans are great. 3. The changing head
tilt of the woman from sideways to center is a very precise details
cinematographer use to paint an overall story or emotion.”

3. Feedback for ad generation for the Brainly Ad shown in Fig 5.4
(a) Expert 1: ”I find the overall story formulation to be decent. It por-

trays kids encountering challenges in solo learning, showcasing easy
accessibility and a gradual improvement in confidence and engagement
throughout the story. I would still prefer a scene where the UI of the
app is somehow shown to the user.††”

(b) Expert 2: ”I like the use of animated scenes, but I find the incorpo-
ration of different main characters slightly jarring. Either they should
have been in a common scene, or the main character should not change
with every scene. The standout feature of the ad is the utilization of
color themes and their harmonization with the emotional tone of each
scene.”

(c) Expert 3: ”Having created Ed-Tech advertisements, I find the story-
telling to be excellent. This ad is very persuasive, although it lacks
novelty, I still find it to be effective.”

5.1.11 Perplexity evaluation

A common approach to measuring language modeling performance on some data

distribution D is to measure perplexity, which is defined as the exponential of the

average negative loglikelihood per token (Jelinek et al., 2005; Brown et al., 1992;

Biderman et al., 2024), that is:

PPL = exp

 −1∑|D|
j=1 Nj

|D|∑
j=1

Nj∑
i=1

logP (yji |yj1 , . . . , yji−1
)

 , (5.1)

where |D| is the number of documents in the dataset, yj is the j-th document in

D, Nj is the total number of tokens in yj, and yji represents the i-th token of yj.

To calculate perplexity on a selected dataset D, each dataset document y is

tokenized and fed into a language model (following the procedure described below)

via computing logP (y|x), where x is set to either the empty string or a beginning-

of-text token. Thus, given logP (y), for each document y ∈ D we can sum up the

per-document loglikelihoods and divide by the number of total dataset tokens.
††The generated description of the ad actually shows the student interacting with a visible

UI that the image generation model could not respect properly
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Given our language model, we aim to compute the conditional (log) proba-

bility (or “loglikelihood”) of a target string y conditioned on input x, denoted as

logP (y|x). This can be performed in a single LM call.

Let x = x0, x1, ..., xn−1 be an input sequence of n tokens and y = y0, y1, ..., ym−1

be the target sequence of m tokens, where xi and yi represent individual tokens.

To compute logP (y|x), we follow these steps:

1. Concatenate x and y to form a new sequence, but discard the final token
ym−1. The resulting sequence is x0, x1, ..., xn−1, y0, y1, ..., ym−2.

2. Pass this concatenated sequence through the language model to obtain logits
l of shape (n+m−1, |V |), where |V | is the size of the vocabulary. The last m
positions in these logits correspond to the predicted probability distributions
for the target tokens y0 to ym−1, conditioned on the input x and the preceding
target tokens.

3. Apply a log-softmax function to the last m logits to obtain log probabilities
for the completion tokens only.

4. Calculate the conditional loglikelihood of the target string y given the input
x by summing the log probabilities of each target token:

logP (y|x) =
m−1∑
i=0

log p(yi|x, y0, ..., yi−1) =
m−1∑
i=0

l(n+ i, yi), (5.2)

where log p(yi|x, y0, ..., yi−1) is the log probability of the i-th target token
conditioned on the full input x and the preceding target tokens. (and where
x, y0, ...y−1 denotes conditioning on only x.)

We follow the above procedure to calculate perplexity over three equally di-

vided parts of the dataset, i.e., 33-percentile cuts where samples are ranked as per

their memorability values. The lower the perplexity of an LLM over a category of

samples, the better it is at generating those samples. Therefore, for example, if

an LLM has a lower perplexity over high memorable samples, it is easier for it to

generate highly memorable samples than lower memorable ones.

5.1.12 Annotation Protocol and Participant Details for the

LTM Study

Figure 5.12 shows a visualization of the annotation protocol we followed.
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Figure 5.12: The study protocol we followed for our long term memorability human study. All the previous works follow a game-like annotation
protocol, where the study participants compete with each other to get best memorability scores and a participant is excluded
from the study if their annotations fall below a certain threshold. We follow a more natural way in which participants fill an
initial questionnaire, then watch 10 ads with attention checks on day 1 and in subsequent days, receive a form asking them to
fill in what do they remember seeing. Further, using Stable Diffusion, we also ask them to recreate the scenes they remember.
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The participants in the study were students who were offered optional course

credit and freebies like eatables and a chance to see research and know their

memorability scores. The participation was voluntary. The students were shown

a protocol of the study and were required to sign the IRB approval, which was

prominently displayed. The approval contained details about what kind of data

was being collected and how the data would be used. The data collection protocol

was approved by the IRB of the participating institution. The aggregate statistics

were reported to each candidate after completing the study. Three emails were

sent to take-home participants; if they didn’t reply within the given time frame,

their data was discarded from the experiment.

The participants were primarily graduate and undergraduate students. The

participants are from two universities spread across two locations in India. The

participants are bilingual and speak a variety of languages, including English. The

age range is from 16 to 35 years, and all genders/sexes are encouraged. We saw a

roughly 30-70 distribution of females to males.

5.1.12.1 Memorability Questionnaire

This section contains the questions we asked before the study, the attention check

questions that were asked during the study, and finally, the recognition questions

to check which brands were remembered.
5.1.12.1.1 Introductory Questionnaire (to be filled before the study
starts)

1. I remember seeing ads for the following brands this year:
• List 15 randomly selected from the list of brands that we have

2. I remember using products of the following brands this year:
• List 15 randomly selected from the list of brands that we have (non-

intersecting list from above)

3. Have you installed any Ad Blocking software in your browser(s)?
a. Yes
b. No

4. Do you use a Youtube subscription?
a. Yes
b. No

5. Approximately how much percentage of time do you spend on Youtube mo-
bile vs Youtube web?
• <10% on mobile
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• >10% but <30% on mobile
• >30% but <70% on mobile
• >70% on mobile

6. How do you apprise yourself of the latest products and brands? (Multi
correct)
• Primarily friends and family
• Amazon, Flipkart or any other e-commerce stores
• Television and OTT Platform Ads (like Youtube, Netflix, Hotstar, etc)
• Email Ads
• Store Visits
• Website Ads
• I primarily search for products

5.1.12.1.2 Checks (to be answered during the experiment)

1. Attention check: A factual question like, What is the capital of India?
(Asked randomly between videos, needs to be answered in <10s)
a. Kanpur
b. Delhi
c. Goa
d. Mumbai

2. Consistency Check: Do you remember watching this video in this exper-
iment (Asked after showing the 11th video)
a. Yes
b. No

5.1.12.1.3 Recognition Questions (asked after a few days after watch-
ing the videos)

1. In the study, I remember seeing Ads of the following brands:
• (Randomly selected list of 20 brands which contains the brands shown

to the participant)
• {For each brand in the list which the participant has selected}

2. Brand: X (already filled in)
• For the {brand} ad, I remember seeing the following (Write Scene De-

scriptions, feel free to write any scenes, music, characters, emotions,
objects you remember seeing):

5.1.13 Collection of all the Prompts used in the Paper

5.1.13.1 GPT-4 Prompts

Listing 5.11: GPT-4 Prompt to calculate preference between Real Ad (A) and

Generated Ad (B)
As a seasoned marketer, evaluate the effectiveness of the following two ads using a comprehensive set of metrics:

Creativity and Innovation: Originality and uniqueness in conveying the message. Use of unexpected ideas or elements that grab
viewers' attention.
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Emotional Connection: Ability to evoke strong, relevant emotions in the target audience. Establishing a connection between the
brand and the viewers' emotions.

Storytelling: Crafting a compelling narrative that engages and retains the audience. Creating a memorable experience through a
coherent and impactful story.

Visual Appeal: Use of strong visual elements, such as striking visuals, colors, and graphics. Ensuring that the visual elements
align with the overall message and brand image.

Brand Alignment: How well the ad aligns with the values, mission, and personality of the brand. Consistency with the brand's
visual identity, tone, and messaging. The ad's ability to leave a lasting impression on viewers regarding the brand.
Incorporating brand elements that make it easy for the audience to remember and recognize.

Target Demographics: Relevance of the ad content and message to the target audience. Appropriateness of visuals, language,
and themes for the specific demographic group.

Based on these criteria, analyze and determine which of the two ads is more effective. I will provide you with the Voiceover,
followed by their scene−by−scene descriptions, including the emotions shown in the scene, the text, objects, colors, and
style of the image.

Ad (A): {Verbalization for Ad (A)}

Ad (B): {Verbalization for Ad (B)}

Give me your answer in a json format, with the following keys:
− ad_a_score: Score between 0 and 10 for Ad A
− ad_b_score Score between 0 and 10 for Ad B
− winner The winner of the two ads
− reason line separated Reasons for the winner in not more than 3 lines

Listing 5.12: GPT-4 Prompt to measure consistency of an Ad
You are now a seasoned marketer that judges the consistency of an advertisement well. The consistency of an Ad can be

determied by a few metrics (in no particular order) such as:
1. Does the voiceover match with the Scenes in the Ad?
2. Do the scene description make a good story?
3. Are the emotions depicted in the scenes consistent with the overall ad?
4. Does the ad represent the product and the brand well?

Rate the consistency of the following ad out of 10. Give me the rating only and nothing else, or you will be penalized.
{Advertisement Description}

Listing 5.13: GPT-4 Prompt to generate ad verbalization with In-Context-

Learning (ICL)
You are now a seasoned marketer that creates memorable ads given its duration, brand and title.
Your output should follow the writing style of the input exactly. For example, each scene should look like:
The scene shows {}. The foreground colors of the scene are {}, and the background colors are {}. The dominant tone of the

scene is {}. The photography style of the scene is {}. The scene has {} visual complexity. The emotions shown in the
scene are {}. This scene is categorized by the tags {}.

You are only supposed to fill in the {}

Generate the detailed description of a {DURATION_AD1} second memorable advertisement titled ”{TITLE_AD1}” for the
brand {BRAND_AD1}

Generate the detailed description of a {DURATION_AD2} second memorable advertisement titled ”{TITLE_AD2}” for the
brand {BRAND_AD2}

...
Generate the detailed description of a {DURATION_AD5} second memorable advertisement titled ”{TITLE_AD5}” for the

brand {BRAND_AD5}
Generate the detailed description of a {DURATION_TARGET} second memorable advertisement titled ”{TITLE_TARGET}”

for the brand {BRAND_TARGET}
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5.1.13.2 Henry Prompts

Given below are the verbalization templates we use to teach Henry and Henry-

SEED behavior simulation and content simulation tasks:
Listing 5.14: Verbalization pattern to predict memorability given advertisement.

The same template is used to prompt GPT-3.5, GPT-4, Henry,

Henry-Oracle, and Henry-SEED. Note that video tokens are op-

tional.

Students are shown ads and their memorability is tested after 1 to 3

days. For the given ad:

<video> .. </video>

They watch a 15 second advertisement for Chanel.

The title of the advertisement is " Comes in Red for a Limited Edition

CHANEL Fragrance".

The ad is shot in landscape orientation, at a medium pace.

The audio in the ad says: Number 5. Limited Edition. Chanel.

Following are the descriptions of each scene:

Scene 1:

The scene shows a red bottle of perfume that is on a dark surface

.

The foreground colors of the scene are Black, and the background

colors are Dark_Brown,Maroon,Black,Gray.

The dominant tone of the scene is neutral.

The photography style of the scene is product.

The scene has Low visual complexity.

The emotions shown in the scene are gift, romantic, celebration.

This scene is categorized by the tags bottle, man, perfume, red,

woman.

The text shown in the scene is 'N5', 'CHANEL', 'PARIS', 'PARFUM'

....

What would be the memorability score of this video?

Output: 71

Listing 5.15: Henry Prompt to generate ad verbalization used to train and evaluate

Henry-SEED
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Generate the detailed description of a {DURATION_TARGET} second memorable advertisement titled ”{TITLE_TARGET}”
for the brand {BRAND_TARGET}

5.1.13.3 Mistral prompt for filtering marketing ads

Listing 5.16: Mistral Prompt for Ad Filtering
”Based on the topic_tags_vocab = {'politics': 'The art and science of governing societies and making decisions that affect

collective interests.', 'marketing': 'The process of promoting, selling, and distributing products or services to consumers,
often involving market research, advertising, and branding strategies.'} provided, please identify the top most relevant
topic tag from the topic_tags_vocab keys that represent the following advertisement based on content and page_name.
Please use only the most relevant tag and make sure to choose from provided topic tags only. Do not include any other
tags not mentioned in the prompt.Answer with the most relevant topic tag only. The advertisement is posted by the page
Donald J. Trump and has the following content : ['President Trump is coming to town! Get your free tickets now >>>'].
Answer in only politics or marketing.”

cleaned_text = ”The advertisement is posted by the page {page_name} and has the following content : {page_content}”

5.1.14 Computing Infrastructure and Hyperparameters

5.1.14.1 Modeling Memorability

All the experiments were conducted on 8x40 A100 instances. All experiments were

performed leveraging DeepSpeed ZeRO stage-3 with cpu offload (Ren et al., 2021;

Rasley et al., 2020; Rajbhandari et al., 2020) and Flash-attention (Dao et al.,

2022) with gradient-checkpointing (Chen et al., 2016) at bf16 precision. We use

AdamW as the optimizer (with fused gelu), the learning rate was kept 2e-5 for

all experiments. The maximum context length for image-only datasets is 500,

including public video datasets is 800 and including our dataset is 2048. The

corresponding batch sizes are 32,16,8. The gradient accumulation is set to 1 and

weight decay is disabled. The warmup steps are set to 20 and residual dropout

was kept at 0.25. We train all models for two epochs, but use the checkpoint with

best validation spearman correlation.

For all experiments, where we combine datasets, we use a custom sampler to

account for dataset imbalance, that ensures a maximum proportion of the dataset

in an epoch, here are the maximum proportions. For validation we take 5% of

each dataset. We use the provided test splits for public datasets and we use a 15%

test split for our dataset
5.1.14.1.1 Images

1. Lamem 50%
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2. Memcat 100%

3. SUN 100%

5.1.14.2 Videos

1. VideoMem 75%

2. Memento 75%

3. AdsData 100%

4. MediaEval 100%

5.1.14.3 Generating Memorable Ads

All the experiments were conducted on 8x80 A100 instances. All experiments were

performed leveraging DeepSpeed ZeRO stage-2, Flash Attention and Gradient-

Checkpointing. α = 0.001, awac_scale= 1, γ = 0.99, β = 0 cql_scale= 0.1

5.1.14.4 Inference hyperparameters

β = 4, temperature= 0.8, steps_for_target_sync 10, τ = 0.7, two_qs: True,

lr=1e-5

5.1.15 License and Terms of Release

LAMBDA and UltraLAMBDA are sourced from brand videos from YouTube,

Facebook Ads, and CommonCrawl. The dataset annotations and video links con-

tained in LAMBDA and UltraLAMBDA will be released under CC BY-NC 4.0

license. The videos themselves are released as per their creators’ licenses. The

videos or the released data do not contain or disclose any identities of their anno-

tators or any specific persons. Since it is handcrafted, LAMBDA makes sure that

none of the videos are offensive; UltraLAMBDA being sourced from the internet

is noisier. While the videos themselves originate from brands, the content of some

brands may seem offensive to certain people.

We used Llama, GMHRA, ViT, EVA-CLIP, and Qformer models in accordance

with their licenses to train Henry.
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5.1.16 Limitations and Potential Risks

In this paper, we try to fill a gap in the existing literature about long-term mem-

orability modeling and datasets. Therefore, we conduct the first study for that

purpose. While doing that, we have made initial efforts starting with the En-

glish language advertisements. Future work would be needed to address other

languages. Further, given the limitations of the study, we conducted it in an

academic environment with a student population consisting of undergraduate and

graduate student volunteers. We will expand the scope to a wider audience in the

future work. We trained a model, Henry, on the collected dataset, showing good

performance on all literature datasets. However, since the literature datasets are

all English-based and deal with a majorly uniform population, the training will be

scaled to more languages and population types in future work. We also observed

a decrease in performance for brands not seen during the training and for videos

with longer verbalizations exceeding 1500 tokens. Additionally, the model exhibits

a slight inaccuracy when advertisements have significant musical content. In our

opinion, the model does not pose any potential risk or harm besides the limitations

mentioned here. We also conduct a review of the generated ads through experts

and non-expert annotators. Both experts and non-expert annotators preferred

Henry-SEED generated ads 3/5 times.

5.2 Measuring And Improving Engagement Of

Text-to-Image Generation Models

Recent advances in text-to-image generation have achieved impressive aesthetic

quality, making these models usable for both personal and commercial purposes.

However, in the fields of marketing and advertising, images are often created to

be more engaging, as reflected in user behaviors such as increasing clicks, likes,

and purchases, in addition to being aesthetically pleasing. To this end, we intro-

duce the challenge of optimizing the image generation process for improved viewer

engagement. In order to study image engagement and utility in real-world market-

ing scenarios, we collect EngagingImageNet, the first large-scale dataset of images,
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along with associated user engagement metrics. Further, we find that existing im-

age evaluation metrics like aesthetics, CLIPScore, PickScore, ImageReward, etc.

are unable to capture viewer engagement. To address the lack of reliable metrics

for assessing image utility, we use the EngagingImageNet dataset to train Enga-

geNet, an engagement-aware Vision Language Model (VLM) that predicts viewer

engagement of images by leveraging contextual information about the tweet con-

tent, enterprise details, and posting time. We then explore methods to enhance

the engagement of text-to-image models, making initial strides in this direction.

These include conditioning image generation on improved prompts, supervised

fine-tuning of stable diffusion on high-performing images, and reinforcement learn-

ing to align stable diffusion with EngageNet-based reward signals, all of which lead

to the generation of images with higher viewer engagement. Finally, we propose

the Engagement Arena, to benchmark text-to-image models based on their ability

to generate engaging images, using EngageNet as the evaluator, thereby encour-

aging the research community to measure further advances in the engagement of

text-to-image modeling. These contributions provide a new pathway for advancing

utility-driven image generation, with significant implications for the commercial

application of image generation.

5.2.1 Introduction

Machine learning models that interact with humans are built as a means to achieve

an end, and performance metrics in their respective fields reflect how effectively

these models meet the ends. For instance, recommendation systems are optimized

to capture maximum viewer interest and the key performance metrics tracked by

the research community are clickthrough rates and the number and ranking of

relevant documents recommended out of the total document set (Bobadilla et al.,

2013). Similarly, chat assistants are optimized for being helpful, and the com-

monly tracked metrics are the scores of responses preferred by humans (Ouyang

et al., 2022; Stiennon et al., 2020). In the case of image generation, industries such

as e-commerce, fashion, education, and advertising aim to optimize user-focused

outcomes like clicks, purchases, retention, and user engagement. However, the

metrics used by the image generation research community often emphasize aes-
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Aesthetics      Likes Aesthetics        Likes PickScore    Likes PickScore      Likes HPS            Likes HPS            Likes ImageReward    Likes  ImageReward    Likes 

Figure 5.13: Some images from the EngagingImageNet dataset. We constructed
pairs of similar images posted within a 45 days interval by the same
account. In each pair shown in the figure, the left image corresponds
to lower likes and the right one received higher likes. However, ex-
isting image generation metrics like Aesthetics, PickScore, Human
Preference Score, ImageReward, etc., exhibit image preference in the
opposite direction as actual user engagement.

thetic appeal (Xu et al., 2024; Kirstain et al., 2023; Black et al., 2023) and realism

(Dhariwal and Nichol, 2021; Saharia et al., 2022; Ho et al., 2020; Rombach et al.,

2022) factors that crucial for image acceptability but not necessarily aligned with

the ultimate goals of viewer engagement.

We find that popular image generation metrics such as Aesthetics (Schuhmann

et al., 2022), ImageReward (Xu et al., 2024), Human Preference Score (HPS)

(Wu et al., 2023c), and CLIP-H (Radford et al., 2021) have a correlation ranging

from 0.02-0.08 with user engagement measured by likes, roughly equal to ran-

dom chance (Table 5.10). Fig. 5.13 illustrates this effect through some randomly

picked high and low engagement image samples. Further, one may think that the

preferences of image creators (e.g., in the form of upvotes on platforms like Pick-

a-Pic (Kirstain et al., 2023) or Discord (Wu et al., 2023c)) are a good estimate

of image-consumer engagement. However, we find that PickScore and HPS, the

reward models trained on a large dataset of creator preferences, correlate 0.07 with

user engagement. Therefore, there is a lack of reliable metrics capturing viewer

engagement on images.

The lack of progress can largely be attributed to the absence of a large and

open dataset of customer engagement metrics over images. The most common

image generation datasets, MS-COCO (Lin et al., 2014) and LAION (Schuhmann

et al., 2022), contain no signals for user engagement. Therefore, to spur research

in the direction of measurement and optimization of image generation for user

engagement, we curate a large-scale dataset, EngagingImageNet. EngagingIm-

ageNet (§5.2.2) consists of 168 million tweets capturing 17 years of high-quality

enterprise images for over ten thousand brand accounts and average user engage-
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ment of images in the form of likes‡‡. We release EngagingImageNet to serve as a

starting point for measuring, benchmarking, and modeling large-scale engagement-

optimized image generation.

EngageNet as a scoring function to score engagement: EnagingIma-

geNet allows us to train a scoring function that estimates the user engagement

on a particular generated image. We formulate this problem as simulating the

engagement in the form of user likes over an image-containing tweet (§5.2.3.2).

We carry out visual instruction finetuning of LLaVA-1.5 13B (Liu et al., 2023a)

model to estimate the brand-normalized likes given the image along with contex-

tual information that includes input account handle, image description, and time

of the tweet. We find that the resulting scoring model, EngageNet, achieves a

high correlation of 0.62 with actual user engagement.

Engagement Arena: Next, leveraging EngageNet as a judge, on the lines of

LMSYS arena (Zheng et al., 2024; Chiang et al., 2024), we propose Engagement

Arena, an arena where we test the engagement of images generated by various im-

age generation models for the same prompt. Using EngageNet’s reward estimates,

we compute Elo ratings of a number of popular open-source text-to-image gener-

ation models, including Stable Diffusion-3 (Esser et al., 2024), Flux.1-dev (Labs,

2024), Stable Diffusion-XL (Podell et al., 2023), SDXL-DPO (Wallace et al., 2024),

PixArt-alpha (Chen et al., 2024b), Pixart-sigma (Chen et al., 2024a), Stable Dif-

fusion 2.1 (Rombach et al., 2022), etc, and closed-source models like DALL.E-2

(Ramesh et al., 2022). Further, we encourage the research community to adopt

Engagement Arena as a basis for measuring further advances in the engagement

capabilities of text-to-image modeling and incorporating user engagement into the

learning process.

Optimizing the Image generation process with the goal of increasing

engagement: Finally, we explore train-time and run-time methods to induce

the goal of engagement in the text-to-image generation process: (1) Run-time:

conditioning the diffusion model on prompts aligned with higher user engagement,

(2) Train-time: fine-tuning the diffusion model on high-engagement images, and

(3) Train-time: aligning the diffusion model with EngageNet-based rewards via
‡‡EngagingImageNet was collected using Twitter academic API over a period of several years.
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reinforcement learning. We present the results of these experiments in Section 5.2.4

and report the efficacy of each method in generating more engaging images.

To summarize, we make the following contributions:

1. We introduce the problem of engagement-optimized image generation. Im-

ages, especially in industries like advertising, fashion, and e-commerce, are created

to achieve user engagement in the form of clicks, likes, and purchases. Therefore,

the image generation process needs to be biased on the image’s eventual utility,

in addition to the common goals of high aesthetics and fidelity.

2. We curate EngagingImageNet, a large-scale, high-quality dataset consist-

ing of user engagement over images. EngagingImageNet consists of 168 million

tweets collected from 10,135 enterprise Twitter accounts from the time period 2007

to 2023. It consists of the account name, tweet text, media posted with the tweet,

image captions, keywords, colors and tones, the time of posting, and the number

of likes the image received. The dataset is instrumental in our study of image

engagement as the utility in real-world marketing scenarios.

3. We train an engagement-aware vision language model (VLM), called En-

gageNet, to predict user engagement over images. EngageNet exhibits strong

performance in estimating user engagement compared to other commonly used

metrics like FID and aesthetics for evaluating the performance of text-to-image

generation models as well as state-of-the-art LLMs like GPT-3.5 and GPT-4V.

4. Using EngageNet’s predicted engagement scores as a reward, we introduce

Engagement Arena, the first automated arena to benchmark the engagement of

text-to-image models. We rank several popular text-to-image models on their abil-

ity to generate engaging images and further encourage the community to submit

their models to the arena.

5. We demonstrate introducing the goal of engagement in the text-to-image

generation process. We present several approaches to achieve this. These include

conditioning of text-to-image generation on prompts corresponding to high user

engagement, supervised fine-tuning of stable diffusion on high-engagement images,

and reinforcement learning to align stable diffusion with EngageNet-based rewards,

all of which lead to the generation of more engaging images to varying degrees.
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Figure 5.14: Figure illustrating the steps involved in the creation of the EngagingImageNet dataset.
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5.2.2 EngagingImageNet: Dataset With In-The-Wild User

Engagement

To gain insights into image engagement and align text-to-image generation with

user engagement, we start by collecting a large dataset of user engagement over

images. Our data collection method involved leveraging Twitter, a platform ex-

tensively utilized by brands for various purposes such as ongoing product cam-

paigns, sales, offers, discounts, brand building, and community engagement (Alal-

wan et al., 2017). Twitter user engagement metrics encompass user likes, retweets,

comments, mentions, follows, clicks on embedded media, and links. However, the

Twitter API provides access to only user likes, retweets, and comments for a given

post, with access to comments necessitating a separate and costly call. Therefore,

utilizing academic API licenses, we extracted the following data from Twitter:

Tweet ID, company name, username, timestamp, tweet text, media files, and user

likes.

We focus on enterprise handles for our data collection efforts since the content

released by enterprises has the explicit goal of user engagement and is relatively

much cleaner than user-generated content. We began by compiling a compre-

hensive list of company names using the Wikidata knowledge graph (Wikidata

contributors, ongoing), focusing on entities categorized as ‘business’ or ‘enter-

prise’. We conducted Google searches to gather a list of all associated accounts for

these companies. For example, for Adobe, this encompassed accounts like Adobe,

Adobe Photoshop, Adobe Lightroom, Adobe Experience Cloud, and so forth. This

method enabled us to amass a total of 10,135 enterprise Twitter handles. We then

utilized the Twitter API to retrieve tweets posted by these enterprises spanning

from 2007 to the closure of the Twitter API in January 2023. This effort resulted

in the collection of 168 million tweets over a 17-year period, with 28.5 million of

these tweets featuring various forms of media, including GIFs, images, and videos.

Fig. 5.22 shows several examples of media and tweets present in the EngagingIm-

ageNet.

Next, for each username, we bin the tweets falling in the bottom 60 percentile

(and having absolute likes > 20), 60-90 percentile (and having absolute likes > 30),

and 90-100 percentile (and having absolute likes > 40) of all tweets per account

246



Table 5.9: A comparison of datasets containing image preferences

Dataset Size

Pick-a-Pic (Kirstain et al., 2023) 968,965 rankings originated
from 66,798 prompts and 6,394 users

Human Preference Score (Wu et al., 2023c) Total of 98,807 images
generated from 25,205 text prompts

ImageReward (Xu et al., 2024)
Annotations for 8878 text prompts and

corresponding model outputs sampled from
DiffusionDB, resulting in 136,892 compared pairs

EngagingImageNet (Ours)
28.5 million tweets containing media, captions,

colors, tones, and objects, and
with user likes as engagement metric

based on the number of user likes. These buckets are subsequently referred to

as ‘low’, ‘medium’ and ‘high’ liked buckets, respectively. The resulting dataset,

EngagingImageNet, consists of 837,532 samples, having 144,905 high-liked images,

336,200 medium-liked images and 356,427 low-liked images. The high-liked tweets

had an average of 2435 likes, while low-liked tweets had an average of 132 likes.

Subsequently, all images were verbalized by extracting their captions using LLaVA

(Liu et al., 2023a), colors and tones along with their coverage using (Qin et al.,

2020a). Further details regarding the data processing are provided in Appendix

5.2.7.4.

5.2.3 EngageNet: Measuring Image Engagement

In this section, we cover the alignment of existing metrics with viewer engagement

and design a model to measure the progress of image generation models with the

goal of engagement.

5.2.3.1 Alignment of Existing Models with Viewer Engagement

In order to measure the engagement potential of generated images, we first check

the alignment of the most popular existing metrics used for evaluating text-to-

image models with viewer engagement. For this, we calculate the Pearson corre-

lation of Aesthetic score (Schuhmann et al., 2022), CLIP score (Radford et al.,

2021), Pickscore (Kirstain et al., 2023), ImageReward (Xu et al., 2024), and Hu-

man Preference Score (HPS) (Wu et al., 2023c) with ground truth brand-wise
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normalized user likes (0-100) from EngagingImageNet. Table 5.10 presents the

results of this analysis. Clearly, the existing metrics are not aligned with user

engagement.

This non-alignment can be attributed to the following reasons. Models like

PickScore, HPS, and ImageReward are optimized for creator preferences captured

on platforms like Discord or custom web applications rather than user (viewer)

preferences. The feedback from image creators or communities on these platforms

tends to reflect artistic or stylistic biases that do not necessarily correlate with

user engagement metrics like clicks, likes, or shares. Further, these models evalu-

ate images in isolation, without considering the contextual information about the

image, such as company, time of releasing the image, etc., reducing their effec-

tiveness in predicting user engagement. This suggests that the existing metrics

are not designed to capture the user engagement of images. Recent studies have

employed the CLIP model as a proxy for human judgment (Nichol et al., 2022;

Rombach et al., 2022), aiming to assess the alignment between generated images

and text prompts. CLIP, trained on a diverse dataset, is thought to better cap-

ture nuanced aspects of human intention. However, similar to ImageReward and

PickScore, the text prompts for CLIPScore come from image creators rather than

users (viewers), which again is ineffective in conforming to viewers’ expectations.

The aesthetic score, built on pre-trained CLIP, is trained on several datasets cap-

turing image aesthetics. However, as Fig. 5.13 shows, viewer engagement is much

more nuanced than what aesthetics can capture.

Next, we try in-context learning with GPT-3.5 (Ouyang et al., 2022) and GPT-

4-Vision (OpenAI, 2023) to predict viewer engagement over images. For GPT-3.5,

we supply the image verbalization along with the Twitter handle and posting

time, and for GPT-4-Vision, we give the actual image, the image verbalisation,

the Twitter handle and posting time. We find that neither GPT-3.5 nor GPT-4

are able to predict user engagement accurately.

5.2.3.2 EngageNet Model To Align With Viewer Engagement

Since the existing approaches do not show acceptable performance for predict-

ing user engagement over images, we, therefore, train our own engagement-aware
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Table 5.10: Pearson correlation between model predicted scores and image engage-
ment measured by account normalized likes.

Model Configuration Pearson Correlation
PickScore (Kirstain et al., 2023) - 0.0734
ImageReward (Xu et al., 2024) - 0.0285

Human Preference Score (Wu et al., 2023c) - 0.0747
Aesthetic Score (Schuhmann et al., 2022) - 0.0674

CLIP Score (Radford et al., 2021) - 0.0423

GPT-3.5 (Ouyang et al., 2022) 3-shot In-context learning 0.0464
GPT-3.5 (Ouyang et al., 2022) 5-shot In-context learning 0.0351

GPT-4V (OpenAI, 2023) 3-shot In-context learning 0.1453
GPT-4V (OpenAI, 2023) 5-shot In-context learning 0.1264

EngageNet Trained on random KPI, Tested on actual KPI 0.0617
EngageNet Trained without MSE loss 0.5821
EngageNet Trained without date input 0.5365
EngageNet Trained without company input 0.5226
EngageNet Trained without date and company input 0.4476
EngageNet Trained without negative samples 0.6051
EngageNet Trained with MSE loss and negative samples 0.6248
EngageNet Oracle 0.8682

vision-language model (VLM) model, EngageNet. To this end, we perform visual

instruction fine-tuning of LLaVA-1.5 (Liu et al., 2023a) on the EngagingImageNet

train dataset (Figure 5.15).

The core of EngageNet is its ability to condition its output on a diverse set

of inputs, including behavioral signals. The model is architected to predict the

normalized likes of an image on a 0-100 scale. This prediction is conditioned on

a unified input representation that merges visual information with various forms

of metadata, including behavioral cues. The conditioning mechanism operates

as follows. First, the input image is processed by the VLM’s vision encoder to

produce a sequence of visual embeddings. Concurrently, we process the metadata,

which consists of marketer-provided information such as the company name, image

resolution, color palettes, descriptive tags, and the social media release date. These

categorical and textual metadata are converted into a uniform text-based format.

For instance, numerical data like image resolution are described textually (e.g.,

”resolution 1024 by 1024 pixels”). All textual metadata, including these converted

signals, are concatenated into a single string.

This combined text string is then tokenized to create a sequence of textual

embeddings. These are subsequently prepended to the visual embeddings de-
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rived from the image. This concatenated sequence of text and vision embed-

dings forms the final input to the LLaVA-1.5 language model component. The

model’s self-attention mechanism is then responsible for fusing these heteroge-

neous signals—learning the complex interplay between the visual content and the

associated metadata—to predict the engagement score. To enhance the model’s

robustness and its reliance on visual features, we augment the EngagingImageNet

dataset with synthetic negative samples. For 25% of tweets from high and medium

engagement tiers, we pair the tweet’s metadata with an unrelated image from a

different tweet. The corresponding ”likes” for these mismatched pairs are set to

a low value (randomly sampled from 5-15). This procedure encourages the model

to penalize images that are semantically irrelevant to the textual context, thereby

improving its discriminative ability. After this augmentation, our final dataset

comprises 957,809 samples, which we split into training and testing sets.

We design an instruction (Listing 5.17) for the VLM to predict the normalized

likes of an image on a 0-100 scale, also conditioned on metadata comprising the

marketer (company), image resolution, image colours and tones with their spatial

coverage, image description and tags, and the date of releasing the image on social

media.

Since EngageNet is trained to predict the KPI of an image, we additionally

model the problem as a regression task. We attach a two-layered MLP network on

top of the last layer of hidden states of the decoder module to predict the scalar

KPI from EngageNet. Therefore, while typically language models are trained on

cross-entropy loss LCE, we also use mean squared error LMSE as an auxiliary loss

to train EngageNet. This is because LMSE is more sensitive to the difference

between the predicted and actual KPI values, which is crucial to better guide

EngageNet to learn the image KPI prediction task. Thus, the final loss function

for EngageNet is given by:

LEOIG = LCE + λLMSE (5.3)

where λ is a hyperparameter that controls the weight of the auxiliary loss. We set

λ = 0.1 in our experiments. We find that EngageNet demonstrates strong perfor-

mance at predicting user engagement over images, achieving a Pearson correlation
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Image

EngageNet

Prompt for EngageNet

<image>
This is an image that a marketer from company "Honeywell" wants to post on

social media for marketing purposes. The following information about this
image is also given:
(1) image resolution

(2) image colors and tones
(3) marketer's intended image description

(4) marketer's intended image tags
(5) date of posting

Now, carefully observe the image. You have to predict the number of 'likes'..."

Contextual Information 

Marketer: Honeywell; Date: 2022-10-05
Caption: A living room with a couch, coffee

table, and a painting on the wall; home decor
Colors: brown, cream, green, ...; Tones: neutral

Engagement: 78

Figure 5.15: Visual Instruction Finetuning of EngageNet on EngagingImageNet
dataset. The EngageNet model is trained to predict the KPI of an
image on a 0-100 scale, conditioned on marketer provided metadata
comprising the company, image resolution, image colours and tones
with their spatial coverage, marketer’s intended image description
and tags, and the date of releasing the image on social media.

of 0.62 with ground truth user likes (Table 5.10).

We perform an ablation study to understand the impact of different compo-

nents of the instruction on the performance of EngageNet. If EngageNet is not

supplied with contextual information such as marketer company and the time of

posting the image in the input, the correlation of its predictions with ground truth

account normalized likes drops significantly (0.62 to 0.44). This indicates that the

company and the time of posting are important components of the instruction for

EngageNet to predict user engagement accurately. We also attempt to determine

the impact of the auxiliary MSE loss adopted for training EngageNet. The MSE

loss increases the correlation from 0.58 to 0.62, indicating that the auxiliary loss

improves the performance of EngageNet. The MSE loss makes the model more

sensitive to the difference between predicted and actual scores.

We also conduct an experiment to investigate the signal present in the En-

gagingImageNet dataset. For this, we train EngageNet on the EngagingImageNet

dataset but with randomly sampled KPI values. We then evaluate the model on

the EngagingImageNet test dataset with actual KPI values. In this case, the cor-

relation of EngageNet’s predictions with ground truth user likes is nearly zero,

indicating that the KPI values in the EngagingImageNet dataset are crucial for

EngageNet to learn predicting user engagement accurately.

Additionally, we evaluate the impact of adding negative samples to the train-

ing data. These samples are constructed by sampling images and other inputs in

the instruction from different tweets, such that they are not aligned, and then set-
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ting the normalized likes to a very low value. Although we find that the addition

of negative samples does not significantly impact the correlation of EngageNet,

however it does help in improving the robustness of the model. This is because

EngageNet learns to penalize images that are not aligned with the other inputs

in the instruction. This is crucial for leveraging EngageNet as a reward model for

engagement-optimized image generation as described in Section 5.2.4.3. Since we

propose to also utilize EngageNet as an oracle for ranking models in the Engage-

ment Arena, we train EngageNet on the entire EngagingImageNet dataset, i.e.,

with both train and test data. In this configuration, EngageNet accomplishes a

high correlation of 0.87 with ground truth user likes, which establishes its effec-

tiveness to be used as an oracle.

5.2.4 Methods to Improve Image Engagement

We explore three methods for optimizing the text-to-image generation process

to generate more engaging images. These include run-time and train-time opti-

mizations: conditioning of text-to-image models on better prompts, supervised

fine-tuning of stable diffusion on high-liked images, and reinforcement learning

to align stable diffusion with EngageNet-based reward scores. The first method

operates in the natural language domain at run-time, generating a description of

how an engagement-optimized image should look like. On the other hand, the

other two operate in the vision domain, generating actual engagement-optimized

pixels by training the U-Net module of stable diffusion. We cover each of them

next.

5.2.4.1 Conditioning Stable Diffusion on More Engaging Prompts

In the EngagingImageNet dataset, we observe that some images having similar

themes but different details received vastly different levels of user engagement.

For instance, consider the following pair of image captions: (1) ”A living room

having a couch and coffee table with a rug in front.” (2) ”A living room with large

windows having a couch, coffee table and a rug” Despite both images depicting

a similar scene (Figure 5.23), the first image received low engagement, while the
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second image garnered high engagement. In this case, the difference in engagement

can likely be attributed to the presence of elements, such as large windows and

natural light in the second image, which makes the living room appear bigger and

more appealing to a viewer. Such observations motivated us to exploit patterns

related to certain image aspects that can boost engagement. We further extend

this analysis for images posted by a few companies in Appendix 5.2.7.3.

Therefore, in this method (Figure 5.23), we attempt to alter the text prompts

fed to the diffusion model such that the improved captions incorporate character-

istics that have been empirically shown to boost image performance. For this, we

adopt a retrieval framework described as follows. Using FAISS (Johnson et al.,

2019; Douze et al., 2024), we index the vector embeddings of captions belonging to

images in the high performance data subset of the EngagingImageNet train data

as described in Section 5.2.2. Next, for every image caption in the low performance

subset of the test data, we retrieve the semantically most similar caption from the

corpus of high-performing images. If the similarity level is above a certain thresh-

old τ , the retrieved captions thus obtained are passed as input to the diffusion

model for generating more performant images, otherwise the original caption is

used for image generation.

Table 5.11: Results reveal the significant gains achieved in improving the engage-
ment of low-liked subset of the EngagingImageNet dataset by enhanc-
ing the image descriptions fed to a text-to-image model, as described
in Section 5.2.4.1.

Images Training Config Oracle Engagement Reward Engagement reward increase
w/o prompt improvement w/ prompt improvement

DALL.E-2 N.A. 42.1459 45.7077 8.45%
SD 1.4 N.A. 38.7680 43.8173 13.02%

EOIG SD 1.4 RLHF-ES 40.2037 46.1218 14.72%
EOIG SD 1.4 RLHF-DSG 39.4950 44.8116 13.46%

EOIG SD 1.4 Preferred
Finetuning (PFT) 43.1206 46.6490 8.18%

SD 1.5 N.A. 39.4001 44.3287 12.51%
SD 2.1 N.A. 45.4952 49.6946 9.23%

Pixart-alpha N.A. 44.7305 49.3322 10.29%
Pixart-sigma N.A. 46.2870 51.4671 11.19%

SD XL N.A. 49.1094 53.8602 9.67%
SD XL - DPO N.A. 51.3786 54.5863 6.24%
SD 3 Medium N.A. 50.6578 55.0841 8.74%
Flux.1-dev N.A. 48.7226 53.7209 10.26%

Ground Truth N.A. 41.2152 56.7533 37.70%
Average Increase in Engagement 12.41%
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5.2.4.2 Preferred Finetuning on High-Engagement Images

Several prior studies have demonstrated the feasibility of learning styles through

stable diffusion by fine-tuning the model (Pinkney, 2022; Cjwbw, 2022; PromptHero,

2023; Everaert et al., 2023). These approaches typically involve fine-tuning the

U-Net architecture within the Stable Diffusion framework using a set of images ex-

hibiting the desired style. For instance, Everaert et al. (2023) proposed a method

to finetune Stable Diffusion to adapt it to target styles like anime sketches, Amer-

ican comics, Pokemon, starry night, etc.

In this work, we attempt to explore whether the diffusion model can learn

patterns associated with higher user engagement, analogous to learning visual

styles. To this end, we performed fine-tuning of the base Stable Diffusion U-Net

on the preferred data distribution, containing high liked images sampled from

the EngagingImageNet train set (Figure 5.24). We call this process, Preferred

Finetuning. The model was finetuned for 50 epochs, following the procedure

outlined by von Platen et al. (2023). The model minimizes the standard denoising

score matching loss (Ho et al., 2020; Ho and Salimans, 2022), which measures how

well the model predicts the noise added to the image during the diffusion process:

Ldenoise = Ex0,ϵ,t
[
∥ϵ− ϵθ(xt, t, c)∥2

]
(5.4)

where x0 is the original image, xt is the noisy image at time step t, generated

by adding noise ϵ, ϵθ(xt, t, c) is the predicted noise from the model given the noisy

image xt, time step t and conditioning information c i.e., text prompt fed as input

to the diffusion model.

5.2.4.3 Aligning Stable Diffusion With Engagement

Black et al. (2023) proposed denoising diffusion policy optimization (DDPO),

a policy gradient algorithm which frames the denoising process as a multi-step

decision-making problem. The authors showed that DDPO can be employed to

finetune text-to-image diffusion models to align their outputs with a variety of

reward functions including image compressibility, aesthetic quality and image-
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prompt alignment, among others. Therefore, we explore the use of reinforcement

learning to optimize diffusion models to improve the engagement potential of their

generated images. To this end, we leverage EngageNet as a reward model to align

a pre-trained stable diffusion model using DDPO algorithm to produce more en-

gaging images. The entire process of alignment is shown in Figures 5.26, 5.25

in the appendix. In DDPO, the denoising process is viewed as a finite horizon

Markov decision process, where the state comprises of the current context, num-

ber of steps left in the process and the current denoised image. The action to be

taken is to predict the next image using this state.

We experiment with two types of reward functions for finetuning stable diffusion:

(1) Engagement Simulation (ES): We leverage EngageNet to estimate the user

engagement of images generated by stable diffusion. The reward signal is used

to guide stable diffusion to generate higher engagement images as illustrated in

Figure 5.25. The resulting diffusion model is called EOIG-SD (RLHF-ES).

(2) Design Specification Generation (DSG): We train an alternate version of En-

gageNet to produce the design specification of an image, based on conditioning

factors such as the company, time, image caption and viewer likes. This model

learns to predict verbalized image descriptions comprising colors and tones with

their spatial coverage, as well as objects with their locations, that should be re-

flected in an image, for a given engagement level and caption. The detailed method

and results of EngageNet trained on this task are explained in Appendix 5.2.7.7.

Next, we utilise this EngageNet as a reward model to train stable diffusion such

that the images generated by it have a design specification aligned with those

of higher engagement images as shown in Figure 5.26. EOIG-SD (RLHF-DSG)

takes a text prompt and generates an image, which then undergoes verbalization

via image perception models. Its objective is to create images that, when ver-

balized, closely resemble the engagement-conditioned verbalization generated by

EngageNet. Thus, we ask EngageNet to provide the logits for this image verbaliza-

tion, using which a reward is computed for EOIG-SD, indicating how closely this

verbalized output aligns with EngageNet. This reward value serves as feedback

for EOIG-SD in the form of policy gradient, aiding in its continual improvement

and refinement within the image generation process. Only high engagement sam-

ples are used in the training process. The details of this method are described in
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Figure 5.16: Comparison of generated images - EOIG-SD vs Base stable diffusion. En-
gagement optimization helps the model to learn to generate persuasion
skills. EOIG-SD generates better product photography (a,c,d), model
photography (b), generates images with social appeal and social identity
(a,c), and learns temporal patterns (e) (prominently Christmas-themed
image of dog)

Appendix 5.2.7.8.

5.2.4.4 Evaluating the Methods Adopted for Engagement-Optimization

Run-time optimization: Firstly, we investigate the impact of using better

prompts to condition the text-to-image generation process as described in Sec-

tion 5.2.4.1. The results are summarised in Table 5.11. By retrieving semantically

similar captions from the corpus of high-liked images, visual characteristics that

have been empirically shown to enhance image engagement get incorporated in

Table 5.12: Comparing the performance gains on the EngagingImageNet test
dataset, resulting from train-time engagement-optimization methods
applied on stable diffusion, as described in Sections 5.2.4.2 and 5.2.4.3.

Images Training Config Bucket Engagement
Reward

Engagement
Increase Aesthetic Score CLIP Score FID PickScore

Ground Truth N.A.
High 90.9526 N.A. 5.1006 32.6343 N.A. 20.9470

Medium 74.3535 N.A. 5.0940 32.4867 N.A. 20.9351
Low 41.2152 N.A. 5.0518 32.2012 N.A. 20.7406

SD 1.4 N.A.
High 56.1489 N.A. 5.2029 33.0830 24.6631 17.3514

Medium 51.6949 N.A. 5.1634 32.9173 23.4434 17.3344
Low 38.7680 N.A. 5.1662 32.8339 24.2607 17.3262

EOIG SD 1.4
Preferred Finetuning

(PFT) on
High engagement Images

High 62.0390 10.49% 4.8090 32.4524 24.9370 17.3070
Medium 56.1082 8.54% 4.8387 32.3923 23.0904 17.3239
Low 43.1206 11.23% 4.8108 32.2960 23.5885 17.2932

EOIG SD 1.4 RLHF - ES
High 58.2724 3.78% 5.1828 33.2891 23.8656 17.4113

Medium 53.1004 2.72% 5.1686 33.2845 22.7157 17.3802
Low 40.2037 3.70% 5.1629 32.9468 24.1780 17.3672

EOIG SD 1.4 RLHF - DSG
High 57.9188 3.15% 5.2495 33.1072 23.9144 17.3577

Medium 52.9765 2.48% 5.2187 33.0991 23.3626 17.3486
Low 39.4950 1.88% 5.2336 32.9716 24.2147 17.3277
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the text prompt. Therefore, after applying this method, we observe a significant

improvement in the engagement of low-liked subset of the EngagingImageNet test

dataset, consistent across multiple text-to-image models, both open-source and

closed-source. This method is highly effective as it is able to produce images with

higher engagement without any additional training of the diffusion model. We ob-

serve that, on average, an improvement in the prompt results in an improvement

of 12.4% in engagement. The improvement is observed in models across all sizes

and also for models trained on high-engagement images (EOIG-SD).

Train-time optimization: Next, we present the results of the methods

(§5.2.4.2, §5.2.4.3) adopted for engagement-optimized image generation by train-

ing the U-Net module of stable diffusion in Table 5.12. We denote all the models

trained using train-time optimizations like Preferred fine-tuning with EOIG (en-

gagement optimized image generation). We compare the performance of the base

stable diffusion model (SD 1.4), stable diffusion finetuned on high-engagement

images (EOIG-SD PFT), and stable diffusion aligned with EngageNet-based re-

ward functions (EOIG-SD RLHF-ES, EOIG-SD RLHF-DSG). For this, we use

EngageNet-Oracle as a judge to predict the user engagement of the images gener-

ated by these models. This helps us probe the effect of different training strategies

on improving the engagement capabilities of stable diffusion. Consistent with prior

literature, we also include other metrics like FID (Heusel et al., 2017), aesthet-

ics (Schuhmann et al., 2022), CLIP score (Radford et al., 2021), and PickScore

(Kirstain et al., 2023).

The results indicate that while all the training methods improve the engage-

ment capabilities of stable diffusion, however, the extent of improvement varies

widely. We find that finetuning the stable diffusion model on preferred data

distribution, i.e. high-engagement samples from the EngagingImageNet dataset

yields significant gains in the engagement potential of the generated images. This

is evident from the consistent increase in the predicted user engagement of the

generated images across all engagement buckets. Next, we discover that using

EngageNet-based reward functions to align the stable diffusion model also results

in better performance. However, the improvement in image engagement is not as

significant as that achieved by the previous methods. Other metrics like CLIP

score, PickScore and FID do not vary significantly across the EngagingImageNet
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buckets and largely remain unaffected after training stable diffusion in both the

above regimes. This further corroborates their non-alignment with image engage-

ment.

Next, we discuss the side effects of training stable diffusion using the above

methods. As a consequence of training on engaging images, we find that stable dif-

fusion learns to generate images with certain persuasion strategies (Kumar et al.,

2023b). For instance, Fig. 5.16 shows several examples of product and model pho-

tography generated by EOIG-SD and base SD, demonstrating EOIG-SD’s biases

towards certain persuasion strategies such as social appeal and social identity,

commonly observed in marketing scenarios (Kumar et al., 2023b) but ignored in

general photography.

Combination of Train-time and Run-time optimizations: In our ex-

periments, we gauge the impact of different methods in improving image engage-

ment by comparing the results of both train-time (§5.2.4.2, §5.2.4.3) and run-time

(§5.2.4.1) optimisations, as well as their combination. Stable Diffusion 1.4 (Rom-

bach et al., 2022), serves as the baseline model. In Table 5.11, we observe that

when each method is applied individually, such as using better prompts at run-

time or training the diffusion model through supervised finetuning or using rein-

forcement learning, it results in measurable improvements in image engagement

over the baseline. However, the most significant improvements are seen when su-

pervised finetuning or reinforcement learning is combined with better prompts at

run-time. This demonstrates that coupling train-time and run-time optimisations

has a synergistic effect, resulting in higher engagement levels than each method

applied alone.

5.2.5 Engagement Arena: Measuring Engagement Capa-

bilities of Text-to-Image Models

Motivated by the work of LMSYS and similar benchmarks (Chiang et al., 2024),

we propose Engagement Arena as a platform to evaluate the capability of text-to-

image models to generate engaging images. We run a tournament on a common

set of prompts from the EngagingImageNet test set. We leverage EngageNet as an
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oracle for Engagement Arena to compute the Elo ratings of various open-source

text-to-image models, such as Stable Diffusion 3 Medium (Esser et al., 2024),

Flux.1-dev (Labs, 2024), Stable Diffusion XL (Podell et al., 2023), Stable Diffusion

XL-DPO (Wallace et al., 2024), Pixart-sigma (Chen et al., 2024a), Pixart-alpha

(Chen et al., 2024b), Stable Diffusion 2.1, Stable Diffusion 1.5, Stable Diffusion 1.4,

(Rombach et al., 2022), etc., and closed-source models like DALL.E-2 (Ramesh

et al., 2022). Figure 5.17 shows the rankings of these models. It also features

the Elo ratings of ground truth images to serve as topline for benchmarking the

models.

In addition to helping to rank the engagement potential of generated images

accurately, using EngageNet as an oracle also avoids having static benchmarks

with a definitive ground truth. We encourage the research community to adopt

Engagement Arena as a basis for measuring further advances in the engagement

capabilities of text-to-image modeling and incorporating user engagement into the

learning process.

The arena features actual images from the EngagingImageNet dataset as a

topline benchmark for the images generated by different text-to-image models.

We find that Stable Diffusion 3 Medium (Esser et al., 2024) emerges as the best

performing model in the Engagement Arena, with a win rate of 46% over ac-

tual images (Figure 5.27). It is followed by SDXL-DPO (Wallace et al., 2024)

and Flux.1-dev (Labs, 2024). We notice a general trend that image engagement

rises with the size of the text-to-image models. However, there are some excep-

tions to this trend. For instance, Pixart family of models (600M parameters)

and EOIG-SD PFT model (860M parameters) surpass relatively larger DALL.E-2

(6.5B parameters).

We observe that while our EOIG-SD models trained using different methods

(PFT, RLHF) outperform the equal-sized base SD 1.4 model, however there is

a considerable gap between the performance of EOIG-SD and significantly larger

text-to-image models leading the arena. This can be attributed to the inherent

limitations of SD 1.4 in generating high-quality images, which cannot be fully

overcome by the training methods explored in this work.
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Figure 5.17: Rankings and Elo ratings of various text-to-image models in the pro-
posed Image Engagement Arena.

5.2.6 Conclusion

Image generation technologies have undergone a significant evolution, transition-

ing from research concepts to viable commercial products. The initial phase of im-

age generation primarily focused on producing higher-quality images that adhere

to provided prompts. In the next phase, generated images should not only meet

quality standards but also align with the creator’s objectives. This necessitates

conditioning the image generation process based on the utility of the generated

image. In marketing contexts, this utility translates into achieving higher cus-

tomer engagement metrics such as likes, shares, clicks, and more. In this paper,

we introduce the problem statement of engagement-optimized image generation

and propose the first large-scale dataset for this purpose. Additionally, we present

the results of several techniques to solve this problem both in the natural language

domain by generating engagement-optimized text-prompts and in the computer

vision space by generating actual engagement-optimized pixels.

5.2.7 Appendix

5.2.7.1 Related Work

A large body of work has been done with respect to generating images from textual

descriptions. These text controlled image generation models have evolved greatly
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from the time of GANs (Goodfellow et al., 2020) to yield high-quality image

generators based on diffusion models such as DALL-E (Ramesh et al., 2021), Stable

Diffusion (Rombach et al., 2022) and ones that have extended these models, that

are able to follow human text instructions to a large extent. However, the metrics

that these generators optimize are Inception Score (IS) (Salimans et al., 2016)

and Fréchet Inception Distance (FID) (Heusel et al., 2017). It has been observed

by multiple works for example (Kirstain et al., 2023; Wu et al., 2023c; Xu et al.,

2024) etc. that these metrics do not necessarily correspond to human preferences.

To align models with human preferences, reinforcement learning with human

feedback (RLHF) has been successfully used in the LLM literature (Ouyang et al.,

2022; OpenAI, 2023; Touvron et al., 2023) with algorithms such as PPO (Schulman

et al., 2017), DPO (Rafailov et al., 2024) and several variants of these preference

based reinforcement learning algorithms. Similar approaches have also been used

in text-to-image generation models (Black et al., 2023; Wallace et al., 2024). In

these approaches, the latent image generation part of the diffusion model (either

UNet or a Transformer) is trained using a reward model in the case of DDPO or

using user preferences directly in the case of DPO. Both these approaches involve

collecting human preference datasets.

Several human preference datasets for text-to-image generation have been col-

lected in literature. These include Pick-a-Pic dataset (Kirstain et al., 2023),

dataset generated from the Stable Foundation Discord channel (Wu et al., 2023c),

ImageReward dataset (Xu et al., 2024) etc. The human preferences in these

datasets have been collected by explicitly asking humans to state their choices.

These datasets are often accompanies with their own metrics for human preference

alignment such as PickScore (Kirstain et al., 2023), Human Preference Score (Wu

et al., 2023c), ImageReward score (Xu et al., 2024) etc. The authors of these

papers have shown that these metrics are better aligned with human preferences

when compared with text-alignment scores such as CLIP score and BLIP score.

However, these need not align with viewer engagement of images and hence, in

our work, we use implicit data about human preferences derived from engagement

metrics such as clicks, likes etc.
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5.2.7.2 Study with marketers

Unlike other NLP and CV tasks where humans are the topline for any model’s

performance, simulating engagement is a relatively hard task for humans. It has

been shown in several studies that expert human opinions fare similar to non-

experts (e.g., (Tetlock, 2017; Collaborative, 2023)), and the opinion of the non-

expert population is just above a random coin toss for behavior simulation tasks

(e.g., (Tan et al., 2014; Isola et al., 2013)). Therefore, simulating engagement

necessitates an automatic and reliable method to measure engagement.

Brand Correlation Coefficient (r) p-value
Impressions 0.039 0
Clicks 0.076 2.74e-61
CPC 0.047 2.736e-24
CPM 0.191 0.0
CPP 0.207 0.0

Table 5.13: Pearson correlation coefficients (r) and associated p-values for the re-
lationship between marketer-allocated advertisement budget and five
key performance indicators (KPIs): Impressions, Clicks, Cost Per
Click (CPC), Cost Per Thousand Impressions (CPM), and Cost Per
Purchase (CPP). Budget allocation serves as a proxy for marketer
confidence in advertisement efficacy. Data were collected from a For-
tune 500 company’s marketing campaigns (n > 1,000 advertisements)
over a 12-month period. Results suggest no statistically significant
correlation between marketing spend and advertisement performance
across all measured KPIs, indicating potential limitations in expert
marketers’ ability to predict advertisement success.

We conducted several studies with both expert marketers and non-experts to

estimate their capability to simulate engagement. We worked with a Fortune-500

company expert marketers for this task. Marketers usually have to run multiple

advertisements for a single campaign at the same time. We estimated the cor-

relation of their past spend data with several behavioral metrics: impressions,

cost per click (CPC), cost per pixel (CPP), cost per 1000 impressions (CPM),

and clicks. Table 5.13 shows the results of these studies where we observed that

despite being experts in marketing, the budget allocation by these marketers had

almost no correlation with any of the key performance indicators.

Human Eval Protocol: Particpants submitted their ideas and they were inde-

pendently shown the AI generated captions fot these ideas. They are then allowed
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to submit their feedback in the form of like or dislike (not compulsorily). Based

on their feedback they are further prompted for Reason and Feedback. We filtered

the feedbacks that were related to the experimental setup.

5.2.7.3 Analysing Visual Aspects that Drive Engagement

To understand the visual aspects that often lead to higher image engagement, we

analysed pairs of images having same theme but different details, posted within

a 45 days interval by the same account. Then pairs with vastly different engage-

ment levels between the images were sampled. We then extracted the differences

between the image pairs for a few companies using using GPT-4-Vision (OpenAI,

2023). Following are some main observations. For fashion brands like Bulgari,

we observe that images featuring prominent branding and dynamic backgrounds

with bright colors and gradients significantly enhance engagement, as visible in

Figure 5.13 (Image pair-3). For Gucci, engagement is driven by images that main-

tain a clear focus on the product, emphasizing intricate detailing and textures.

Additionally, images that incorporate luxurious backgrounds contribute to higher

engagement levels. In the case of Airbnb, images that blend natural light with

greenery are particularly effective in enhancing user engagement. Showcasing re-

latable homestay experiences aligns closely with Airbnb’s branding, further driv-

ing engagement. Meanwhile, Lenovo benefits from highlighting unique technical

features and specifications while utilizing vibrant colors and high-contrast back-

grounds.

5.2.7.4 EngagingImageNet Filtering Steps

We sample the tweets posted in the 5 year time period from January 2018 to Jan-

uary 2023. We focus our analysis on usernames that market products or services,

and thus weed out usernames belonging to categories like news and sports. Next,

we check if the number of tweets posted by a username exceeds 1000, then we

retain the username, else we discard remove it. This helps in removal of stray

handles and ensures data quality. Further, if the number of tweets posted by a

username exceeds 2000, we randomly sample 2000 tweets for this username to

avoid oversampling tweets from the same username and thus compromising data
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variance. This step ensures that the dataset is fairly representative of different

enterprise accounts. Moreover, we weed out all tweets containing media other

than images and where tweet text is less than 50 characters. Also, the hyperlinks

present in the tweets are masked with a <hyperlink> placeholder. This results in

365,129 tweets posted in 5 years by 592 Twitter handles.

Since it is hard to assign KPI credit to the multiple media present in a single

tweet, we assign an equal KPI credit to all the media in a tweet.

5.2.7.5 EngagingImageNet Additional Details

Table 5.14: Distribution of ground truth EngagingImageNet images

KPI # Objects Aesthetic Score CLIP Score

High 3.405 4.994 30.509
Low 3.291 4.881 30.638

5.2.7.6 Prompts for Instruction Finetuning

Listing 5.17: Visual instruction finetuning Pattern: EngageNet predicts user en-

gagement of images given contextual information about the social

media post.

Input: <image>

This is an image that a marketer from company ”gucci” wants to post on social media for marketing purposes.

The following information about this image is also given:

(1) image resolution i.e. (width, height): [680, 680],

(2) image colors and tones: {”color and tones”: {”colors”: {”Orange”: {”coverage”: 0.6}, ”White”: {”coverage”:

0.18}, ”Pink”: {”coverage”: 0.12}, ”Brown”: {”coverage”: 0.1}}, ”tones”: {”warm”: 0.72, ”neutral”: 0.28, ”

cool”: 0}}},

(3) marketer's intended image description: A girl with a nose ring and gold earrings.,

(4) marketer's intended image tags: nose ring, gold earrings, girl, makeup, lips, face, beauty, earrings, nose,

lips , gold, woman, makeup, accessories,

(5) date of posting: 22−February−2019

Now, carefully observe the image. You have to predict the ”number of likes” that this image will get, on a scale

of 0 to 100.

It measures the number of times the viewers will interact with the social media post by clicking the ”Like”

button to express their appreciation for the image. Thus, an image with higher visual appeal, alignment

with the company's brand identity, and relevance to the audience, is likely to receive more likes. Moreover

, a good image should stongly correspond with the marketer's intended image description and tags to

attract the target audience.

Your predicted ”number of likes” will help the marketer to decide whether to post this image or not on the

social media platform.
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(a)

(b)

Figure 5.18: Aesthetic Score distribution across High and Low KPI images in En-
gagingImageNet dataset

Answer properly in JSON format. Do not include any other information in your answer.

Output:

{”likes”: 19}

Listing 5.18: Engagement Finetuning Verbalization Pattern (1): Explicitly asking

model to pay attention to engagement tokens
Input: You are a smart model. I am giving you some data regarding an image − (1) captions (2) keywords (3)

image resolution i.e. (width, height) (4) release date (5) number of downloads i.e. how many times the

image was downloaded (6) number of forwards i.e. how many times the image was forwarded to someone
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else (7) number of impressions i.e. how many times the image was seen by someone. Note that (5), (6)

and (7) are Key Performance Indicators (KPIs) of the image, thus they are important signals of its

perceived quality and popularity.

You have to predict following attributes of the image: (1) colour and tones from the lists given below: −

Allowed colours: ['Red', 'Dark_Red', 'Green', 'Bright_Green', 'Dark_Green', 'Light_Green', '

Mud_Green', 'Blue', 'Dark_Blue', 'Light_Blue', 'Royal_Blue', 'Black', 'White', 'Off_White', 'Gray', '

Dark_Gray', 'Silver', 'Cream', 'Magenta', 'Cyan', 'Yellow', 'Mustard', 'Khaki', 'Brown', 'Dark_Brown', '

Violet', 'Pink', 'Dark_Pink', 'Maroon', 'Tan', 'Purple', 'Lavender', 'Turquoise', 'Plum', 'Gold', 'Emerald',

'Orange', 'Beige', 'Lilac', 'Olive'] − Allowed tones: ['warm', 'neutral', 'cool'] (2) main objects present in

the image and the diagonal coordinates of their bounding boxes: [x1, y1, x2, y2]

Now, predict the attributes for the following image: [captions: ”Waist up portrait of mixed−race female worker

posing confidently while standing with arms crossed in plant workshop”, keywords: ”female, worker,

young, woman, mixed−race, african, african−american, modern, contemporary, work, occupation,

industry, industrial, plant, factory, workshop, work shop, strong, tough, gritty, masculine, short, hair,

latin−american, plump, adult, mechanic, repair, repairman, handywoman, foreman, copy space, portrait,

looking at camera, standing, posing, smiling, recruitment, employment, job, opportunity, engineer,

production, manufacturing, assembly, assembling, line”, image resolution: ”(5760, 3840)”, release date:

”2019−12−02”, number of downloads: ”24”, number of forwards: ”106”, number of impressions: ”5941”]

Answer properly in JSON format. Do not include any other information in your answer.

Output: {”color and tones”: {”colors”: {”Gray”: {”coverage”: 0.4}, ”Dark_Gray”: {”coverage”: 0.22}, ”Black”:

{”coverage”: 0.14}, ”Off_White”: {”coverage”: 0.13}, ”Silver”: {”coverage”: 0.11}}, ”tones”: {”warm”: 0, ”

neutral”: 1.0, ”cool”: 0}}, ”objects”: {”jeans”: [2076.67, 2542.5, 3023.88, 3827.01], ”woman”: [1892.94,

11.18, 4260.09, 3824.34], ”safety vest”: [2160.75, 1410.95, 3668.16, 3826.63], ”shirt”: [2163.59, 1079.3,

4254.59, 3826.1]}}

Listing 5.19: Engagement Finetuning Verbalization Pattern (2): Noisy engage-

ment in input and asking the model to correct the noise in addition

to producing content
Input: ”You are a smart model. I am giving giving you some data regarding an image released by a content

creator − (1) captions (2) keywords (3) image resolution i.e. (width, height) (4) release date (5)

approximate number of downloads that the creator wants to achieve (6) approximate number of forwards

that the creator wants to achieve (7) approximate number of impressions/views that the creator wants to

achieve

You have to predict following attributes of the image: (1) colour and tones from the lists given below: −

Allowed colours: ['Red', 'Dark_Red', 'Green', 'Bright_Green', 'Dark_Green', 'Light_Green', '

Mud_Green', 'Blue', 'Dark_Blue', 'Light_Blue', 'Royal_Blue', 'Black', 'White', 'Off_White', 'Gray', '

Dark_Gray', 'Silver', 'Cream', 'Magenta', 'Cyan', 'Yellow', 'Mustard', 'Khaki', 'Brown', 'Dark_Brown', '

Violet', 'Pink', 'Dark_Pink', 'Maroon', 'Tan', 'Purple', 'Lavender', 'Turquoise', 'Plum', 'Gold', 'Emerald',

'Orange', 'Beige', 'Lilac', 'Olive'] − Allowed tones: ['warm', 'neutral', 'cool'] (2) main objects present in

the image and the diagonal coordinates of their bounding boxes: [x1, y1, x2, y2] (3) exact number of

downloads that the image will get (4) exact number of forwards that the image will get (5) exact number

of impressions/views that the image will get

Now, predict the attributes for the following image: [ captions: ””Hispanic adult man holding 100 brazilian real

banknotes smiling happy pointing with hand and finger to the side””, keywords: ””pointing, side, face,

happy, hopeful, smile, finger, optimistic, hand, point, showing, looking, smiling, one, gesture, confident,

up, cheerful, look, mouth, joy, friendly, expression, emotion, presentation, idea, blue, background,

hispanic, latin, man, male, guy, beard, bald, shaved, adult, young, money, currency, business, brazilian,

cash, brazil, real, investment, banknote, 100””, image resolution: ””(9216, 6144)””, release date:
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””2021−02−27””, approximate number of downloads that the creator wants to achieve: ””4””,

approximate number of forwards that the creator wants to achieve: ””17””, approximate number of

impressions/views that the creator wants to achieve: ””919”” ] Answer properly in JSON format. Do not

include any other information in your answer.”

Output: {”color and tones”: {”colors”: {”Cyan”: {”coverage”: 0.69}, ”Light_Blue”: {”coverage”: 0.16}, ”

Turquoise”: {”coverage”: 0.15}}, ”tones”: {”warm”: 0, ”neutral”: 0, ”cool”: 1.0}}, ”objects”: {”man”:

[1068.6, 18.57, 8143.44, 6121.09], ”banknote bill”: [3443.5, 2146.79, 5294.15, 3455.05]}, ”exact downloads”:

4, ”exact forwards”: 15, ”exact impressions”: 885}

Listing 5.20: Engagement Finetuning Verbalization Pattern (3): Noisy engage-

ment in input and asking the model to correct engagement in output
Input: ”You are a smart model. I am giving giving you some data regarding an image released by a content

creator − (1) captions (2) keywords (3) image resolution i.e. (width, height) (4) release date (5)

approximate number of downloads that the creator wants to achieve (6) approximate number of forwards

that the creator wants to achieve (7) approximate number of impressions/views that the creator wants to

achieve

You have to predict following attributes of the image: (1) exact number of downloads that the image will get

(2) exact number of forwards that the image will get (3) exact number of impressions/views that the

image will get.

Now, predict the attributes for the following image: [ captions: ””Movie slapstick vector illustration. Behind the

scenes inscription on flapper””, keywords: ””behind the scenes, slapstick, flapper, movie, cinema, scene,

logo, frame, film, duration, behind, act, black, cameraman, clip, date, director, entertainment, flap,

footage, gray, hollywood, icon, illustration, inscription, operator, screen, shooting, sign, signal, symbol,

television, theater, time, timecode, tv, vector, video, view, white””, image resolution: ””(4096, 4096)””,

release date: ””2017−06−11””, approximate number of downloads that the creator wants to achieve:

””5””, approximate number of forwards that the creator wants to achieve: ””31””, approximate number of

impressions/views that the creator wants to achieve: ””914”” ] Answer properly in JSON format. Do not

include any other information in your answer. ”

Output: {”exact downloads”: 5, ”exact forwards”: 32, ”exact impressions”: 864}

Listing 5.21: Engagement Finetuning Verbalization Pattern (4): No engagement

in input and asking the model to simulate exact engagement in out-

put
Input: ”You are a smart model. I am giving giving you some data regarding an image released by a content

creator − (1) captions (2) keywords (3) image resolution i.e. (width, height) (4) release date

You have to predict following attributes of the image: (1) exact number of downloads that the image will get

(2) exact number of forwards that the image will get (3) exact number of impressions/views that the

image will get

Now, predict the attributes for the following image: [captions: ””Company employees working in software

development and designer office””, keywords: ””business, office, meeting, collaegue, successful, workplace,

analysis, architect, coworker, discussion, entrepreneur, marketing, professional, company, employee,

occupation, software, work, worker, team, people, brainstorming, cooperation, corporate, project, strategy,

teamwork, together, computer, colleagues, young, diverse, collaboration, design, developer, group, ideas,

management, smiling, multiethnic, place, plan, research, startup, technology, women, programmer,

architects””, image resolution: ””(4035, 2690)””, release date: ””2020−09−29”” ]. Answer properly in

JSON format. Do not include any other information in your answer.”
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Output: {”exact downloads”: 1, ”exact forwards”: 1, ”exact impressions”: 186}

Hyperparameters for visual instruction finetuning of EngageNet:

• per device train batch size: 16
• gradient accumulation steps: 1
• max context length: 2048
• warmup ratio: 0.03
• warmup learning rate scheduler: cosine
• after warmup, learning rate: 2e-5

5.2.7.7 Repurposing EngageNet for Design Specification Generation

(DSG)

5.2.7.7.1 Training For Design Specification Prediction Task Prior works

(Bhattacharyya et al., 2023) have demonstrated the capability of language-only

pre-trained models like GPT-3 and Vicuna to infer information about visual con-

tent without explicit visual reasoning training. Recent models such as BLIP (Li

et al., 2023a), Llava (Liu et al., 2023a), MiniGPT-4 (Zhu et al., 2023), and GPT-4

(OpenAI, 2023) have shown language models’ ability to ’see’ by incorporating vi-

sual branches (often a combination of ViT (Dosovitskiy et al., 2020) and Qformer

(Li et al., 2023a)) and training them with image-language instructions to answer

image-related questions. However, our findings (Table 5.15) reveal that neither

pretraining nor further instruction tuning gives a language model the ability to

simulate the downstream engagement of an image-based communication or reason

about how a more engaging image should look like. Further, we also find that in-

context learning, while successful in many other domains, does not perform well

in engagement-related tasks. Therefore, to teach a language model about image

content and downstream performance, we further train the Llama LLM.

To teach Llama about an image and its downstream engagement, we per-

form engagement fine-tuning (Khandelwal et al., 2024). We design four types of

engagement-finetuning instructions (Listings 5.18-5.21). The idea is to verbalize

an image using image perception models like color extractor, tones extractor, ob-

ject, and coordinate detector and convert it to natural language. Then, the image

caption, keywords, the required engagement level, date, and marketer information

is fed as input to the LLM and asked to output the image verbalization. This
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way, the LLM learns to map the image prompt and engagement level to image

verbalization.

We train the LLM on the train set of EngagingImageNet data. In Listings 5.18-

5.19, we provide the image caption, keywords, date, and required engagement

level as inputs to the model. Our aim is to train the model to predict a design

specification comprising colors and tones with their spatial coverage as well as

objects with their bounding boxes, that should be reflected in the image. Moreover,

we observe improved learning in the language model for engagement-conditioned

image generation when introducing a 20% noise in the engagement. We then

task the model to rectify this noise in the output, simultaneously generating the

verbalization of the engagement-conditioned image in Listings 5.20-5.21.
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(g) (h)
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Figure 5.19: Plots showing variation of number of tweets and likes with time for
a few companies in the EngagingImageNet dataset
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Table 5.15: Performance of all models on the engagement-optimized design specification generation (DSG) task across different engagement-
level images in EngagingImageNet data. It is noteworthy that (i) EngageNet outperforms larger sized GPT-3.5, 4 and also the
sized Llama model fine-tuned on the same data (without including engagement tokens). (ii) In-context learning does not work
well in the engagement-conditioned design specification generation domain.

EngagingImageNet Data

Model Engagement
Optimized KPI Colours Tones Objects

IOU ↑ Cosine
Similarity ↑ RGB

distance ↓ Coverage
RMSE ↓ Coverage

RMSE ↓ IOU ↑ Cosine
Similarity ↑ Normalised

Area RMSE ↓ Relative
Position Error ↓

Finetuned
Llama No High 0.3717 0.8725 0.2855 0.1694 0.1957 0.2547 0.8071 0.2612 0.3078

Low 0.3362 0.8602 0.2223 0.1811 0.2339 0.2743 0.8047 0.2421 0.2954

Finetuned
Llama (EngageNet)

Engagement
Finetuning

High 0.4065 0.8898 0.2795 0.1507 0.1718 0.2732 0.8122 0.2509 0.3054
Low 0.4531 0.8791 0.2084 0.1443 0.1848 0.3455 0.8228 0.2373 0.2889

3-shot GPT-3.5 In-context
learning

High 0.214 0.7765 0.2851 0.1773 0.396 0.1085 0.6621 0.3090 0.3651
Low 0.2175 0.7781 0.2254 0.2118 0.3347 0.1338 0.6749 0.3098 0.3573

5-shot GPT-3.5 In-context
learning

High 0.2137 0.7704 0.2743 0.1976 0.324 0.1011 0.6456 0.3160 0.3622
Low 0.2191 0.7705 0.2176 0.2449 0.3186 0.1264 0.656 0.3150 0.3615

3-shot GPT-4 In-context
learning

High 0.2421 0.7887 0.2726 0.192 0.304 0.1035 0.6316 0.3137 0.3666
Low 0.2405 0.793 0.2332 0.2094 0.3037 0.1419 0.6604 0.3248 0.3763

5-shot GPT-4 In-context
learning

High 0.2437 0.7905 0.2702 0.1864 0.2937 0.1008 0.6136 0.3111 0.3782
Low 0.2448 0.7924 0.2278 0.2144 0.2944 0.1464 0.6406 0.3301 0.3857
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5.2.7.7.2 Results for Engagement-conditioned Design Specification Pre-

diction Task To generate engagement-conditioned image verbalization, we com-

pare several models: in-context trained GPT-3.5 and GPT-4, engagement-finetuned

Llama (EngageNet), and Llama fine-tuned on image verbalization but without

user engagement information. By comparing against a fine-tuned Llama trained

on the same instruction as EngageNet, except with the inclusion of engagement

tokens, we aim to isolate the impact of engagement tokens on improving generated

engagement-conditioned image verbalizations, independent of the instruction tun-

ing process. We assess all models across multiple metrics that evaluate the extent

to which the generated verbalizations align with ground truth in terms of colors,

tones, objects, and their positions. Intersection over Union (IoU) metrics gauge

the overlap between ground truth and generated constructs (colors and objects),

while similarity metrics measure cosine similarity between ground truth and gen-

erated constructs (colors, objects). Coverage errors determine the how closely the

proportion of ground truth and predicted constructs (colors, tones) in the image

match. Additionally, we calculate differences in predicted and ground truth areas

and locations for objects, accounting for semantically similar objects (such as sofa

and couch). Further details on these metrics and their formulas can be found in

Appendix 5.2.7.7.3.

Table 5.15 displays the outcomes. The results indicate that engagement fine-

tuning enables EngageNet to achieve superior performance across all metrics, sur-

passing both equivalently sized fine-tuned Llama and 10x larger instruction-tuned

GPT-3.5 and GPT-4. Furthermore, in-context learning demonstrates subpar per-

formance, with both the three and five-shot models displaying similar results.
5.2.7.7.3 Evaluation Metrics for Design Specification Prediction

• Colours IOU: The intersection over union between set CG of colours in
the ground truth image verbalization and set CP of colours in the predicted
image verbalization is computed as:

IOU(CG, CP ) =
|CG ∩ CP |
|CG ∪ CP |

(5.5)

• Colours similarity: For the ground truth colour set CG = cG1 , c
G
2 , ..., c

G
i and

predicted colour set CP = {cP1 , cP2 , ..., cPj }, we correspondingly obtain the
sets of word vectors WG = {wG

1 , w
G
2 , ..., w

G
i } and W P = {wP

1 , w
P
2 , ..., w

P
j },

using Spacy §§. For some similarity threshold τ , the mean cosine similarity
§§https://spacy.io/
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is computed as follows:∑|CG|
i=1

∑|CP |
j=1 cos(wG

i , w
P
j ).I(w

G
i , w

P
j , τ)∑|CG|

i=1

∑|CP |
j=1 I(wG

i , w
P
j , τ)

(5.6)

where I(wG
i , w

P
j , τ) is an indicator function defined as:

I(wG
i , w

P
j , τ) =

{
1 if cos(wG

i , w
P
j ) > τ

0 otherwise
(5.7)

We take τ = 0.7 in our experiments.
• Colours RGB distance: Given the ground truth colour set CG = cG1 , c

G
2 , ..., c

G
i

and predicted colour set CP = {cP1 , cP2 , ..., cPj }, we map each colour to its
RGB value to obtain the setsWG = {wG

1 , w
G
2 , ..., w

G
i } andW P = {wP

1 , w
P
2 , ..., w

P
j }

where each element in the sets is a 3× 1 dimensional vector of RGB values.
For some distance threshold τ , the mean euclidean distance is calculated as
follows: ∑|CG|

i=1

∑|CP |
j=1 distance(wG

i , w
P
j ).I(wG

i , w
P
j , τ)∑|CG|

i=1

∑|CP |
j=1 I(wG

i , w
P
j , τ)

(5.8)

where I(wG
i , w

P
j , τ) is an indicator function defined as:

I(wG
i , w

P
j , τ) =

{
1 if distance(wG

i , w
P
j ) < τ

0 otherwise
(5.9)

We take τ = 0.5 in our experiments.
• Colours coverage RMSE: Consider the intersection I = CG ∩ CP of

ground truth and predicted colour sets. The root mean squared error be-
tween the area covered by colours present in both ground truth and predicted
image is calculated as follows:

RMSE =

√√√√ 1

|I|

|I|∑
i=1

(coverage(cGi )− coverage(cPi ))
2 (5.10)

• Tones coverage RMSE: Consider the intersection I = TG∩T P of ground
truth and predicted image tones. The root mean squared error between the
proportion of tones in ground truth and predicted image is calculated as
follows:

RMSE =

√√√√ 1

|I|

|I|∑
i=1

(coverage(tGi )− coverage(tPi ))
2 (5.11)

• Objects IOU: The intersection over union between set OG of objects in
the ground truth image verbalization and set OP of objects in the predicted
image verbalization is computed as:

IOU(OG, OP ) =
|OG ∩OP |
|OG ∪OP |

(5.12)

• Objects similarity: For the ground truth set of objectsOG = {oG1 , oG2 , ..., oGi }
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and set of predicted objects OP = {oP1 , oP2 , ..., oPj }, we correspondingly obtain
the sets of word embeddingsWG = {wG

1 , w
G
2 , ..., w

G
i } andW P = {wP

1 , w
P
2 , ..., w

P
j },

using Spacy. For some similarity threshold τ , the mean cosine similarity is
computed as follows:∑|OG|

i=1

∑|OP |
j=1 cos(wG

i , w
P
j ).I(wG

i , w
P
j , τ)∑|OG|

i=1

∑|OP |
j=1 I(wG

i , w
P
j , τ)

(5.13)

where I(wG
i , w

P
j , τ) is an indicator function defined as:

I(wG
i , w

P
j , τ) =

{
1 if cos(wG

i , w
P
j ) > τ

0 otherwise
(5.14)

We take τ = 0.7 in our experiments.
• Normalised objects area RMSE: As described above, consider the sets of

word vectors of objects present in the ground truth imageOG = {oG1 , oG2 , ..., oGi }
and predicted image OP = {oP1 , oP2 , ..., oPj }. Given the ground truth image
area AG = width×height and a similarity threshold τ , we first compute the
mean squared error between the areas of bounding boxes of similar objects
in the ground truth and predicted image, weighted by the proportion of each
object in the ground truth image and its cosine similarity with the object
in the predicted image. Further, we take the square root of the error thus
obtained and normalise it by AG to achieve the desired metric, as follows:

MSE =

∑|OG|
i=1

∑|OP |
j=1 {(area(oGi )− area(oPj ))

2.
area(oGi )

AG . 1
cos(wG

i ,wP
j )
}.I(wG

i , w
P
j , τ)∑|OG|

i=1

∑|OP |
j=1 I(wG

i , w
P
j , τ)

(5.15)

Normalised RMSE =

√
MSE

AG
(5.16)

where I(wG
i , w

P
j , τ) is an indicator function as described above. We take

τ = 0.7 in our experiments.
• Normalised relative position error: Following a similar approach as

explained above, we compute the mean euclidean distance between the cen-
troids of bounding boxes of similar objects weighted by the cosine similarity
of objects present in the ground truth and predicted images and normalise
it by the length of diagonal in the ground truth image DG:

RPE =

∑|OG|
i=1

∑|OP |
j=1 {(distance(centroid(oGi ), centroid(oPj ).

1
cos(wG

i ,wP
j )
}.I(wG

i , w
P
j , τ)∑|OG|

i=1

∑|OP |
j=1 I(wG

i , w
P
j , τ)

(5.17)

Normalised RPE =
RPE

DG
(5.18)

where I(wG
i , w

P
j , τ) is the aforementioned indicator function. As before, we

take τ = 0.7 in our experiments.
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5.2.7.8 Performance Alignment of Stable Diffusion using Design Spec-

ification Generation (DSG) Reward

5.2.7.8.1 DDPO Additional Details The denoising process in diffusion mod-

els is a multi-step recursive process with a pre-specified finite number of steps. In

DDPO Black et al. (2023), this denoising process is viewed as a finite horizon

Markov decision process (MDP), where the state comprises of the current con-

text, number of steps left in the process and the current denoised image. The

action to be taken is to predict the next image using this state.

The image forming the initial state is sampled from a standard normal distri-

bution. Mathematically, a finite horizon MDP is defined as a tuple {T,S,A, P, R},

where these components are defined as:

1. T is the horizon or the number of steps in the MDP

2. S is the state space. Here it comprises of three components, the context c,
the current number of steps left in the denoising process, t, and the current
denoised image representation (a given vector encoding of the image), xt.
The initial or starting state has the context c0 given as input, the number
of steps left at the beginning, t0 = T and the initial image representation is
sampled from a normal distribution of appropriate dimension, x0 ∼ N (0, I).

3. A is the action space, and here it is the space comprising of all image rep-
resentations x. If x is a d−dimensional vector, then A = Rd.

4. P : S ×A → ∆(S) is the transition function. Here, we specify P separately
for each of the three components of the state as Pc = δ(ct), Pt = δ(t − 1),
and Px = δ(at), where the current state is ct, t, xt, current action at = xt−1,
and δ(·) is the Dirac delta distribution.

5. R : S ×A → R is the reward function that takes a state and action as input
and returns a scalar reward. We generate this scalar reward signal using
EngageNet.

DDPO is based on conventional policy gradient algorithms in RL, which as-

sumes that the environment, i.e., the transition and the reward functions are

neither differentiable nor accessible to the RL agent. However, when one has

access to both the transition and reward functions, and when both these are dif-

ferentiable, one could use analytic policy gradient based algorithms for training

the RL agent (Wiedemann et al., 2023). In our case, we do have access to the

transition and reward functions. As in standard diffusion models, the transition
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function is the single-step denoising function. However, we do not have a differ-

entiable reward function as we are using non-differentiable featurizers in Step 1 of

the reward generation process as described above. An alternative approach would

be to make this step differentiable and then use the end-to-end analytic policy

gradient approach for aligning the stable diffusion model. In order to simplify our

training pipeline and to avoid getting into potential stability issues when perform-

ing end-to-end learning, we chose the conventional RL approach of DDPO for this

work.

5.2.7.8.2 Design Specification Generation (DSG) reward The steps of

constructing the reward function based on design specification generation are given

below 5.26:

• We featurize the image generated by stable diffusion to obtain features (in-
cluding colors, tones, objects, and their positions) that EngageNet is meant
to predict as part of a design specification conditioned on contextual in-
formation such as marketer, expected likes, tweet content, image caption,
etc.

• Based on the above conditioning factors, we use EngageNet to predict the
logits of the verbalized features of the image generated by stable diffusion
as described in the previous step.

• We now have one logit per text token as EngageNet’s output. To convert
this to a scalar score, we compute the probabilities of each token and then
add them.
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Figure 5.20: Reward curves for the performance alignment of stable diffusion on
EngagingImageNet (train (a) and validation (b) sets)

5.2.7.9 Broader Impacts and Limitations

Our work on assessing and improving the engagement of text-to-image generation

models introduces several societal considerations that require careful examination.
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Table 5.16: Results for the performance of various models on the EngagingIm-
ageNet for the engagement-optimized image generation task. Re-
sults are computed on the EngageNet Design Specification Genera-
tion (DSG) reward (§5.2.7.8) as well as other metrics reported in the
literature.

Images KPI Reward ↑ Other Metrics
FID ↓ Aesthetic Score ↑ CLIP Score ↑

Base Stable Diffusion High 242.545 34.958 5.221 33.346
Low 238.471 42.999 4.925 31.705

High-KPI fine-tuned
Stable Diffusion

High 239.023 26.023 4.850 32.210
Low 223.619 37.497 4.433 30.979

EngageNet aligned
Stable Diffusion (EOIG-SD)

High 254.918 36.546 5.341 33.379
Low 247.597 49.492 5.087 31.719

We aim to provide a comprehensive analysis of the potential impacts, highlight-

ing both contributions to the field and the precautions necessary for responsible

development and deployment of engagement-optimizing technologies.

1. The ability of models to enhance user engagement raises important societal
concerns around responsible deployment and potential misuse. Quantify-
ing these risks is essential for developing appropriate safeguards. However,
studying user engagement, particularly in uncontrolled environments, poses
ethical challenges. For instance, investigating engagement through manip-
ulated or highly optimized content could influence user behavior in unin-
tended or harmful ways. To mitigate this risk, we have limited our research
to controlled environments and theoretical analyses, ensuring that insights
into engagement are gathered without causing real-world harm.

2. To foster responsible use of our research and datasets, we will release an
Acceptable Use Policy explicitly prohibiting the misuse of our dataset for
generating content aimed at harmful or deceptive purposes. This includes
banning its use in abusive contexts (e.g., creating deceptive ads or manip-
ulative imagery) and sensitive applications such as political propaganda.
We will actively monitor compliance with this policy and encourage others
in the research community to adopt similar ethical guidelines when using
engagement-optimizing models. Importantly, our dataset is PII-free, ensur-
ing that no personal information of individuals is included. This dataset
was collected in accordance with strict ethical and legal guidelines, ensuring
compliance with relevant data protection policies.

3. We plan to release the dataset and evaluation frameworks in stages, start-
ing with the release of our benchmark and engagement arena. This staged
release will help familiarize the research community with the methodologies
we use to assess engagement in generated content. By gradually releasing
the dataset (in batches of 20%), we will closely monitor how models perform
in enhancing engagement. Initially, the dataset will only be available in a
controlled environment, enabling us to manage usage and address emerging
concerns. We also encourage the research community to contribute addi-
tional data to expand our evaluation framework. This approach balances
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the need for research progress with ethical responsibility and community
involvement.

4. We recognize the dual-use potential of models designed to optimize engage-
ment. While this technology can be beneficial in fields like education or user-
centered design, it also poses risks of misuse in deceptive contexts. Drawing
parallels to ethical discussions on persuasive technologies, we believe that
transparency and safeguards in dataset design can mitigate the potential for
harm. The insights gained from understanding user engagement can aid in
the responsible development of future AI systems.

5. PII Removal and Data Collection: To protect user privacy, we have im-
plemented measures to remove all personally identifiable information (PII).
Our dataset is compiled without collecting sensitive personal data, focusing
solely on public, non-individualized information. All references to specific
users or personal identifiers have been removed. Additionally, we collect
only aggregate metrics (e.g., overall user interaction data) to measure en-
gagement trends without compromising individual privacy.

6. In this work, we specifically focus on the engagement optimization capa-
bilities of text-to-image generation models. We introduce benchmarks and
evaluation methodologies for measuring user engagement with AI-generated
images and develop techniques to enhance this engagement. Our findings
suggest that engagement with generated content can be improved not just
by increasing model size but also through targeted training strategies. Fur-
thermore, engagement patterns observed in one domain (e.g., social media)
often transfer to other domains (e.g., marketing or websites), which broadens
the applicability of our findings.

5.2.7.9.1 Limitations In this paper, we examine a single aspect of engage-

ment. In real-world applications, user engagement often occurs in sequential or

multi-stage interactions, which we plan to address in future research. Addition-

ally, this work is focused on English-language data; we aim to extend our findings

to other languages in subsequent studies. Furthermore, the impact of audience

dependence on engagement has not been studied extensively in this paper, partly

due to the absence of publicly available datasets. We plan to work on collecting

such datasets to explore this effect in future work. These limitations underscore

areas for further research and caution against over-generalizing our findings to

more complex real-world scenarios.

5.2.7.10 Additional Figures
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Speaker:
Dolce & Gabbana
Followers: 5.3 mi

Receivers: 
Nike Subscribers/
General Twitter 

Audience
Receiver Effect:

Likes: 5k
Views: 38k

Retweets: 1k

Channel:
Twitter

Message: Tweet
DEVOTION
Uncover the tantalizing delectable notes of
the new bright gourmand fragrance by
#DolceGabbana. 
Discover more at
https://bit.ly/DGDevotion_fragrance_ 
#DGBeauty #DGDevotion #MadeinItaly

Figure 5.21: Any message is created to serve an end goal. For marketers, the end
goal is to bring in the desired receiver effect (behavior) (like clicks,
purchases, likes, and customer retention). The figure presents the
key elements in the communication pipeline - the marketer, message,
channel, receivers, and finally, the receiver effect. Traditionally, im-
age generation is optimized on metrics such as aesthetics and FID.
For effective communication, the image generation process needs to
be optimized on the receiver effect (other than the traditional met-
rics).
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Figure 5.22: Sample media and tweets from enterprise accounts in the EngagingImageNet dataset. It can be noted, for example, in the Adobe
Photoshop tweets, that the media does not differ significantly in aesthetics or objects themselves (all of them are cats). Despite
that, there is much difference in the image KPIs, indicating that viewer engagement is distinct from other optimization objectives
such as aesthetics or prompt adherence.
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Figure 5.23: Retrieval framework for conditioning text-to-image models on higher
engagement prompts as described in Section 5.2.4.1. The retrieved
prompts may incorporate image characteristics that have been em-
pirically shown to improve image engagement.

Figure 5.24: Illustration depicting supervised finetuning of stable diffusion model
on high-liked images from EngagingImageNet dataset as described in
Section 5.2.4.2. This method of finetuning U-Net module on preferred
data distribution results in generating more engaging images.
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 Policy Gradient 

EOIG-SD

EngageNet

Prompt for EngageNet
"<image>

This is an image that a marketer from company
"Honeywell" wants to post on social media for marke�ng
purposes. The following informa�on about this image is

also given:
(1) image resolu�on

(2) image colors and tones
(3) marketer's intended image descrip�on

(4) marketer's intended image tags
(5) date of pos�ng

Now, carefully observe the image. You have to predict the
number of 'likes'..."

Caption: A living room with a
couch, coffee table, and a painting

on the wall
Keywords: living room, couch,

coffee table, painting, wall, home
decor, ...

Image being progressively
optimized for achieving

high engagement

EngageNet 
is the 

reward model 

Contextual Information

Marketer: Honeywell
Date: 2022-10-05

Caption: A living room with a couch,
coffee table, and a painting on the wall
Keywords: living room, couch, coffee
table, painting, wall, home decor, ...

Curate Prompt for EngageNet using
Contextual Information for image

Engagement Simulation (ES)

Captions and Keywords fed to
EOIG-SD

Likes: 78

Reward 
Expected brand-normalized

likes for the image

Figure 5.25: Aligning Stable Diffusion for higher engagement using DDPO algorithm (Black et al., 2023) using Engagement Simulation (ES) as
the reward function. Architecture of the proposed pipeline for training stable diffusion for the objective of engagement-optimised
image generation (EOIG) using Engagement Simulation (ES) reward function as described in Section 5.2.4.3. EngageNet predicts
the engagement level of images generated by stable diffusion. The scalar rewards are used to guide stable diffusion to produce
progressively higher engagement images. The resulting diffusion model is called EOIG-SD (RLHF-ES).
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 Policy Gradient 

EOIG-SD

EngageNet

Prompt for EngageNet 
"You are a smart model. I am giving giving you some data

regarding an image tweeted by a company -
(1) company

(2) twi�er username
(3) tweet text

(4) cap�ons and keywords
(5) image resolu�on i.e. (width, height)

(6) tweet date
(7) number of likes received on the tweet

(8) KPI label of the tweet i.e. "high" or "low"...

Caption: A living room with a
couch, coffee table, and a painting

on the wall
Keywords: living room, couch,

coffee table, painting, wall, home
decor, ...

Image being progressively
optimized for achieving

high engagement
Verbalization of EOIG-SD generated

image computed using image
perceptual models 

Colours Extractor

Object Detector

Tones Extractor

EngageNet generates
Decoding Graph of image
conditioned on behavior 

Reward = sum of conditional probability of generation
of Design Specification tokens

COLOURS

Dark Blue: 40%    Olive Green: 35%    Brown: 25%

TONES

Warm: 10%  Neutral: 85%      Cool: 5%

OBJECTS

Armchair: [1, 100, 15, 70] 
Side table: [300, 420, 150, 240]

Lamp: [400, 450, 30, 95]

Image Design Specification

<BOS> 0.5Colors

0.4Dark
Blue

0.7Orange

Black

0.740%

0.435%

0.525%

0.245%

0.322%

0.5Green

0.6Olive
Green

0.8
Dark

Green

0.2Brown

0.3Red

20%

35%

18%

10%

27%

0.4

0.1 0.3

0.6

0.8

Contextual Information

Marketer: Honeywell
   Tweet Text: “In honor of Energy

Efficiency Day, let us help you identify...”
Required KPI (Likes): 465

Date: 2022-10-05
Caption: A living room with a couch,

coffee table, and a painting on the wall
Keywords: living room, couch, coffee
table, painting, wall, home decor, ...

Image perceptual
models 

EngageNet
logits converted
to probabilities

Best Path

Path used to
compute
reward

Reward Computation on EngageNet Decoding Graph

EOIG-SD
verbalization path

Curate Prompt for EngageNet using
contextual information for Design
Specification Generation (DSG)

Captions and Keywords from
Marketer's Input fed to EOIG-SD

Figure 5.26: Aligning Stable Diffusion for higher engagement using DDPO algorithm (Black et al., 2023) using Design Specification Generation (DSG) as
the reward function. The architecture of the proposed pipeline for training stable diffusion for the objective of engagement-optimized image
generation (EOIG) using Design Specification Generation (DSG) reward function as described in Section 5.2.4.3 and 5.2.7.7. EngageNet
trained in this manner possesses the capability to generate verbal descriptions comprising colors, tones, objects, and their locations of an
image based on conditioning factors such as the company, time, image caption and viewer likes. We leverage this EngageNet as a reward
model to train stable diffusion such that the images generated by it have a design specification aligned with those of higher engagement
image. EOIG-SD takes a prompt and generates an image, which then undergoes verbalization via image perception models. Its objective is
to create images that, when verbalized, closely resemble the engagement-conditioned verbalization generated by EngageNet. The verbalized
output of EOIG-SD is fed into the reward model. We ask EngageNet to predict the logits for this image verbalization, using which a reward
is computed for EOIG-SD, indicating how closely this verbalized output aligns with EngageNet. This reward value serves as feedback for
EOIG-SD in the form of policy gradient, aiding in its continual improvement and refinement within the image generation process. Thus,
this pipeline trains EOIG-SD to generate engagement-optimized images by gradually aligning its output with EngageNet.
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Chapter 6

Conclusion and an Outlook for Future Work

This thesis has explored the intersection of communication theory, behav-

ioral science, and artificial intelligence, with a particular focus on explaining,

understanding, and optimizing human behavior through large-scale modeling ap-

proaches. Our work builds upon the fundamental seven-factor model of communication—

communicator, message, channel, time of receipt, receiver, time of behavior, and

receiver’s behavior—while leveraging unprecedented access to digital behavioral

data to advance both explanatory and predictive approaches to behavioral science.

In the domain of persuasion strategy analysis, we have made significant contri-

butions to understanding the mechanisms of influence in advertising. Through

comprehensive research spanning marketing, social psychology, and machine learn-

ing literature, we developed the most extensive framework of generic persuasion

strategies to date. This work was supported by the creation and release of the

first datasets for studying persuasion strategies in both image and video adver-

tisements.

We discover that existing Large Language Models (LLMs), despite their re-

markable capabilities in various domains, are inherently limited in modeling be-

havior due to the systematic removal of behavioral data during training. To

address this limitation, we developed the Large Content and Behavior Models

(LCBM), which integrates all seven factors of communication to create more com-

prehensive models of human behavior. To support future research in this area, we

released extensive behavior instruction fine-tuning data derived from over 40,000

YouTube videos and 168 million Twitter posts. Additionally, we established new

benchmarks for evaluating joint content-behavior understanding, encompassing

both predictive and descriptive tasks.

We also made significant strides in demonstrating how behavioral signals can

enhance content understanding. Our research showed substantial improvements

across 46 different tasks spanning 23 benchmark datasets across language, au-



dio, text, and video modalities. We proposed a scalable approach to enhance Vi-

sion Language Models (VLMs) without requiring significant architectural changes,

making our improvements readily accessible to the broader research community.

These results strongly validate our hypothesis that behavioral responses provide

valuable signals for content understanding, opening new avenues for improving AI

systems’ comprehension capabilities.

In the realm of content generation, we made contributions towards generating

performant content in both text and visual domains. Through our work on memo-

rability optimization, we developed Henry, a model achieving a 44% improvement

in memorability scores of the generated content from the starting point. This

represents the first successful application of synthetic data in a domain previously

lacking large-scale training resources. In the visual domain, we addressed the crit-

ical need for engagement-optimized image generation through the development of

EngageNet and the creation of EngagingImageNet, a comprehensive dataset of 168

million tweets with associated media and engagement metrics. Our introduction

of Engagement Arena, the first automated benchmark for assessing the engage-

ment potential of text-to-image models, provides the research community with a

valuable tool for evaluating and improving engagement-oriented image generation

techniques.

Despite these significant contributions, our research has several important

limitations that must be acknowledged. First, our models exhibit fundamental

scale-dependent performance limitations, where behavioral specialization cannot

overcome the advantages of larger parameter counts in pure content understand-

ing tasks, as evidenced by LCBM’s consistent underperformance compared to

significantly larger models like GPT-4V. Second, we observe domain specificity

constraints in behavioral transfer, with models trained on platform-specific data

(e.g., YouTube) showing substantial performance degradation when applied to

different domains (e.g., email marketing), suggesting that behavioral patterns are

more context-dependent than initially hypothesized. Third, our approaches face

scalability challenges with longer and more complex content, particularly evident

in the verbalization approach used in LCBM, where performance degrades sig-

nificantly for content exceeding certain thresholds (videos over 300 seconds or

emails with extensive visual content). Fourth, the quality and availability of be-
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havioral signals create dependencies that limit model applicability—performance

drops substantially for content with sparse engagement data or when behavioral

metrics are influenced by external events and temporal variance. Fifth, our eval-

uation frameworks, particularly for memorability prediction, are constrained by

relatively low human consistency scores (ranging from 0.55 to 0.78), indicating

fundamental challenges in behavioral assessment that set theoretical performance

ceilings. Finally, our datasets and models exhibit inherent biases stemming from

platform demographics, self-selection effects, and algorithmic influences, which

may limit generalizability across diverse populations and cultural contexts. These

limitations underscore the need for continued research in developing more robust,

scalable, and generalizable approaches to behavioral modeling.

Looking ahead, this research opens several promising directions for future work.

The integration of behavioral data into AI systems could lead to more nuanced

and context-aware models that better understand and predict human responses.

Concretely, we visualize the following avenues for automated behavioral sciences

in the near future:
1. Infinite Personalization: Before the invention of the printing press, each

document had to be written with manual effort. Content production was the
limiting factor in communication. The invention of the printing press made
it possible to mass-produce content. However, delivery was still limited.
While newspapers began to be printed, their area of influence was limited
to a certain small geographical boundary. Delivery was the limiting factor
then. Steam engines helped solve some of that problem. Still, the extent of
delivery was limited, and the speed of delivery was slow. It was not until the
invention of the internet and mobile devices that the delivery problem was
completely solved. Now, anyone can instantly deliver any piece of content
to any other person. The next limiting factor in communication is the time
and human labor cost of producing content. This limits a communicator to
send out the same message to all the receivers. Further, as both ours and
several other research studies have shown, humans are bad at predicting the
behavior of others; we need techniques to produce performant content. This
will enable infinite personalization, a personalized way of communicating
between a communicator and a receiver, with the aim of fulfilling the shared
goals.

2. Simulating Digital Humans and Digital Societies: At the heart of
social simulation lie two perspectives (Gilbert and Troitzsch, 2005): 1) the
dynamic feedback or interaction among individuals, and 2) the states of the
population, either as a collective whole or as distinct groups. By simulating
social activities, researchers and practitioners can predict the future evo-
lution of individuals and groups. In addition, they facilitate experimental
environments through interventions. Social simulation can be implemented

287



in two forms: digital humans (Park et al., 2023; Chopard and Droz, 1998;
Argyle et al., 2023a) and digital societies (Khandelwal et al., 2024; Bhat-
tacharyya et al., 2024; SI et al., 2025; Khurana et al., 2024; Santurkar et al.,
2023). In digital human simulation, either human-crafted rules or parame-
terized models are used to depict the behavior of individuals (referred to as
agents) who interact with others, in societal simulation, equations or models
are used to model the society as a whole including the societal non-linear
interactions.
The emergence of Large Language Models as behavioral proxies represents
a paradigm shift in social science methodology. Recent breakthroughs have
demonstrated that LLMs can be conditioned to embody specific demo-
graphic and psychological profiles, creating ”silicon samples” that mirror
human populations (Argyle et al., 2023b; Park et al., 2024). This capability
extends beyond simple text generation to encompass the replication of com-
plex human attitudes, decision-making patterns, and social behaviors with
remarkable fidelity.
The implications of this technological advancement are profound. LLMs
can now be adapted to reflect the worldviews and opinions of populations
shaped by specific information environments (Chu et al., 2023), enabling
researchers to explore how media consumption patterns influence collective
beliefs and behaviors. The integration of persona variables—demographic,
social, and behavioral characteristics—into language models (Hu and Collier,
2024) has opened new avenues for understanding individual differences in
perception and judgment, particularly in contexts where human opinions
naturally diverge.
These developments converge toward a future where digital twins of human
populations could serve as testing grounds for social interventions, policy
proposals, and communication strategies. The ability to simulate complex
social phenomena such as information cascades, opinion polarization, and
collective decision-making (Wang et al., 2025) promises to revolutionize how
we study and predict human behavior at scale. Yet this power comes with
the responsibility to ensure these simulations authentically represent the
diversity of human experience, as early investigations reveal significant gaps
between model outputs and the true breadth of human opinion (Santurkar
et al., 2023; Rescala et al., 2024).
The key to building these simulation models lies in leveraging the vast dig-
ital footprint left by these observable factors. Both physical and digital
interactions contain these signals. For instance, consider a physical political
banner displayed by the political campaign of Kamala Harris saying “For
The People” in a busy city such as San Francisco and viewed by office-goers,
receiving various reactions such as hopeful comments, visible disdain, or
cold indifference. Analogously in the digital domain, a tweet by a figure like
Donald Trump saying “Make America Great Again” receives likes, retweets,
and comments, whether positive or negative. However, digital signals are far
more accessible and recorded in structured datasets, making them ideal for
training a Foundation Model. Digital Analytics have been recording such
digital signals for decades. Digital analytics involves collecting, analyzing,
and interpreting data from digital platforms to capture user behavior. This
data typically includes messages sent by a marketer in the form of websites,
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apps, or digital products and records actions such as clicks, page views, ses-
sion durations, and navigation patterns, which provide insights into user
behavior over a period of time. We have made some initial strides towards
achieving this in our recent work (Bhattacharyya et al., 2024).

3. Measuring persuasiveness and engagement potential of automated
agents: Large Language Models (LLMs) have demonstrated proficiency in
content generation and, more recently, in human persuasion through the
production of persuasive content (Durmus et al., 2024; Singh et al., 2024b).
The development of such systems that are capable of generating verifiably
persuasive messages presents both opportunities and challenges for society.
On one hand, such systems could positively impact domains like advertising
and social good, such as addressing vaccine hesitancy (Sekar, 2021; Moore,
Thomas, 2021). Conversely, these systems could have detrimental effects
if used to influence political inclinations (Tappin et al., 2023), propagate
misinformation (Lukito, 2020), or manipulate consumer choices (Boerman
et al., 2017).
The sophistication of LLMs in recognizing and generating persuasive con-
tent has reached remarkable levels, with models now capable of distinguish-
ing argument quality and predicting individual responses with human-level
accuracy (Rescala et al., 2024). This capability raises fundamental ques-
tions about the nature of persuasion itself and challenges our understand-
ing of what makes arguments compelling across different populations. The
emergence of ensemble approaches that can surpass individual human per-
formance in persuasion detection suggests we are approaching a threshold
where artificial systems may possess more nuanced understanding of persua-
sive mechanisms than any single human observer. This convergence of arti-
ficial and human judgment capabilities (Santurkar et al., 2023) underscores
the critical importance of developing evaluation frameworks that capture
the full spectrum of human diversity in persuasive response.
Given these potential societal impacts, it is crucial to develop rigorous meth-
ods for studying, measuring, benchmarking, and monitoring the persuasive
capabilities of AI models. We have made some initial strides towards achiev-
ing this in our recent works (Singh et al., 2024b; Khurana et al., 2024).

4. Automatically explaining human behavior: While the behavioral sci-
ence communities are divided into prediction and explanation, and the com-
munities are growing farther apart, the fundamental curiosity of humans
is to learn more about themselves and their environment and how it op-
erates. While predictions may be increasingly more and more accurate, if
the mechanism is not well understood, the fundamental human curiosity
is not satisfied. As a community, our ongoing commitment is to uncover
the mechanisms underlying human behavior. However, we have to discover
methods that carry both higher predictive power and are scalable. This
may be solved in the future by using advanced tools such as simulations and
data from natural experiments to bridge the gap between prediction and
explanation.

5. Rethinking free will in the age of behavioral modeling: A central
and unresolved question in behavioral science is how we should define and
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understand free will in the context of human decision-making. One practical
definition is that free will is the lack of predictability in human actions—if
a model is able to predict an individual’s next action to a high degree of
accuracy, then the existence of true free will comes into question. Tradi-
tional views often assume that individuals possess agency and autonomy in
their choices. However, the development of models such as LCBM (Khan-
delwal et al., 2024) and advances in persuasion modeling (Singh et al., 2024b;
Khurana et al., 2024) challenge this notion by demonstrating that human
behavior can be systematically predicted, influenced, and even optimized
using large-scale data and machine learning. This perspective aligns with a
growing body of evidence from neuroscience and psychology, which suggests
that many decisions are shaped by unconscious processes, prior experiences,
and environmental cues—sometimes before conscious awareness is even pos-
sible (see, e.g., Libet’s experiments (Libet, 1985; Libet et al., 1993), studies
on priming (Bargh et al., 1996), and behavioral economics research on au-
tomaticity (Tversky and Kahneman, 1985; Ariely et al., 2003; Johnson and
Goldstein, 2003)). Such findings lend support to anti-free will arguments,
raising profound questions about the true nature of autonomy.
Our work in this thesis explores these issues from a modeling and machine
learning perspective, showing how behavioral data and computational mod-
els can capture and even influence human actions at scale. Ultimately, the
next frontier for science will be to rigorously investigate the degree to which
human actions are governed by free will versus being determined by past ex-
periences, environmental context, and external influences. Addressing this
will require interdisciplinary collaboration, combining empirical research,
philosophical inquiry, and advances in AI to better understand the bound-
aries and mechanisms of human agency.

6.1 Societal and Ethical Implications of Behav-

ior Optimized AI

The development of AI systems capable of understanding, predicting, and opti-

mizing human behavior represents a significant technological advancement with

far-reaching societal implications. Our work throughout this thesis—spanning per-

suasion strategy analysis in advertising, behavioral signal integration for content

understanding, content generation optimized for memorability and engagement,

and comprehensive behavioral modeling—demonstrates both the tremendous po-

tential and the inherent risks of behavior-optimized AI. This section synthesizes

the ethical considerations that emerge from our research and similar work in the

field, providing a comprehensive framework for understanding the broader impli-

cations of this technology.
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6.1.1 Dual-Use Nature and Manipulation Risks

Behavior-optimized AI systems exhibit a fundamental dual-use characteristic: the

same technologies that can benefit society can also be misused for harmful pur-

poses (Singh et al., 2024b; Khurana et al., 2024). Our research demonstrates that

AI models can be trained to generate content optimized for specific behavioral

outcomes—whether increasing memorability, engagement, or persuasive impact.

While such capabilities offer tremendous potential for positive applications in ed-

ucation, public health campaigns, and user-centered design, they simultaneously

create unprecedented opportunities for manipulation and deception.

The manipulation potential of these systems manifests in several critical do-

mains. Political manipulation represents perhaps the most concerning risk,

where behavior-optimized AI could be deployed to shape political inclinations

through carefully crafted, engagement-maximized content that exploits psycho-

logical vulnerabilities rather than presenting balanced information (Tappin et al.,

2023). Misinformation amplification poses another significant threat, as these

systems could be used to create and disseminate false information in formats opti-

mized for viral spread and cognitive acceptance (Lukito, 2020). Additionally, con-

sumer manipulation risks emerge when such technologies are used to encourage

ill-informed purchasing decisions or exploit behavioral biases for commercial gain

(Boerman et al., 2017).

Our work has consistently acknowledged these risks and implemented safe-

guards including Acceptable Use Policies that explicitly prohibit deployment in

high-risk domains such as political campaigning, spam generation, and deceptive

advertising. However, the fundamental challenge remains: how can we quantita-

tively measure the ”manipulation potential” of a behavioral model and develop

robust safeguards that prevent misuse while preserving beneficial capabilities?

6.1.2 Privacy and Data Protection Challenges

The development of behavior-optimized AI systems necessitates the collection

and analysis of vast amounts of behavioral data, raising significant privacy con-

cerns. Throughout our research—from analyzing persuasion strategies in adver-
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tising datasets to integrating behavioral signals like eye movements, comments,

and engagement metrics—we have implemented comprehensive privacy-preserving

strategies, including systematic removal of personally identifiable information (PII),

restriction of data collection to enterprise accounts identified through structured

knowledge bases, and aggregation of behavioral signals to prevent individual re-

identification.

However, the scale and granularity of behavioral data required for effective

modeling present ongoing challenges. Even aggregated behavioral data can poten-

tially reveal sensitive information about individuals or groups, particularly when

combined with other data sources. The development of formal differential privacy

mechanisms (Dwork et al., 2014) and federated learning approaches (McMahan

et al., 2017) represents promising directions for addressing these concerns, but

significant technical challenges remain in balancing privacy protection with model

utility in high-dimensional, multimodal behavioral modeling scenarios.

6.1.3 Bias, Fairness, and Representation

Behavioral data inherently reflects the biases present in the platforms and popula-

tions from which it is collected. Our research has consistently acknowledged that

data sourced from diverse platforms—including advertising datasets for persuasion

analysis, social media platforms for engagement modeling, eye-tracking studies for

attention modeling, and video platforms for behavioral understanding—may ex-

hibit demographic skews, self-selection bias, and algorithmic influences that could

lead to uneven model performance across different user groups or reinforce existing

societal biases.

These biases manifest in multiple dimensions: demographic biases related to

age, gender, and socioeconomic background may influence how persuasion strate-

gies are interpreted and modeled; cultural biases may affect the recognition and

effectiveness of behavioral interventions across different cultural contexts; and

temporal biases may result from the dynamic nature of online platforms and

changing user behaviors over time.

Addressing these challenges requires comprehensive bias mitigation strategies
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including adversarial de-biasing techniques (Zhang et al., 2018a), fairness-aware

learning algorithms (Hardt et al., 2016), and systematic bias auditing using sub-

group performance analysis and counterfactual fairness testing. However, the fun-

damental challenge of ensuring fair and representative behavioral modeling across

diverse global populations remains an active area of research.

6.1.4 Autonomy, Consent, and Human Agency

The development of increasingly sophisticated behavior prediction and optimiza-

tion systems raises profound questions about human autonomy and agency. If

AI systems can accurately predict and influence human behavior, what does this

mean for individual freedom of choice and decision-making? Our work touches on

these philosophical questions, particularly in the context of free will and determin-

ism, suggesting that human behavior may be more predictable and influenceable

than commonly assumed.

The concept of informed consent becomes particularly complex in the context

of behavior-optimized AI. While users may consent to data collection for service

improvement, they may not fully understand how their behavioral data will be

used to create models capable of predicting and influencing their future actions.

This asymmetry of understanding and power raises questions about the validity of

consent in these contexts and the need for more transparent and comprehensible

disclosure practices.

6.1.5 Accountability and Governance Frameworks

The deployment of behavior-optimized AI systems requires robust governance

frameworks that can address the complex ethical challenges while enabling benefi-

cial applications. Our research has contributed to this discussion through various

approaches: implementing acceptable use policies for persuasion analysis datasets,

developing controlled evaluation frameworks for engagement optimization, estab-

lishing privacy-preserving protocols for behavioral data collection, and proposing

”Constitutional AI” approaches for persuasion, where models are trained to adhere

to auditable ethical principles developed in collaboration with ethicists, psycholo-

293



gists, and policymakers.

However, significant challenges remain in developing effective governance mech-

anisms. Technical auditing requires new methods for assessing model behavior,

detecting potential misuse, and ensuring compliance with ethical guidelines. Reg-

ulatory frameworks must balance innovation with protection, requiring close

collaboration between technologists, policymakers, and civil society organizations.

Industry standards need to be developed to ensure responsible development

and deployment practices across the technology sector.

6.1.6 Long-term Societal Implications

The widespread deployment of behavior-optimized AI systems could fundamen-

tally alter the nature of human communication and social interaction. The pos-

sibility of ”infinite personalization”—where every message is optimized for maxi-

mum effectiveness with specific individuals—could create unprecedented levels of

persuasive power while potentially undermining the shared information environ-

ment necessary for democratic discourse.

The development of digital societies and human simulation capabilities raises

additional concerns about the potential for creating echo chambers, amplifying

existing divisions, or manipulating public opinion at scale. While these technolo-

gies offer tremendous potential for understanding and addressing social challenges,

they also create new risks that must be carefully managed.

6.1.7 Toward Responsible Development

Addressing these challenges requires a multi-faceted approach combining technical

innovation with ethical reflection and regulatory oversight. Key principles for

responsible development include:

Transparency and Explainability: Developing models whose decision-making

processes can be understood and audited, enabling meaningful oversight and ac-

countability.

Participatory Design: Involving diverse stakeholders, including affected
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communities, in the design and deployment of behavior-optimized AI systems.

Continuous Monitoring: Implementing systems for ongoing assessment of

model behavior, societal impact, and potential misuse.

Adaptive Governance: Creating flexible regulatory frameworks that can

evolve with technological developments while maintaining core ethical principles.

The societal implications of behavior-optimized AI are profound and multi-

faceted. While our research demonstrates the tremendous potential of these tech-

nologies for beneficial applications, it also highlights the critical importance of

addressing ethical challenges proactively. The future development of this field

must prioritize not only technical advancement but also the careful consideration

of societal impact, ensuring that the power to understand and influence human

behavior is wielded responsibly and in service of human flourishing.

6.2 Open Research Questions

To spur progress, we outline key open research questions, categorized into four

thematic areas.

Core Modeling and Architectural Challenges

• Architectural Innovation for Multimodal Behavior: What architec-
tural innovations are needed to effectively fuse textual, visual, and behav-
ioral modalities in a single, coherent model? A central challenge is balanc-
ing the computational overhead of incorporating diverse behavioral signals
against the performance gains in downstream tasks.

• Modeling Long-term and Sequential Behavioral Dynamics: Current
models often predict immediate, atomic actions (e.g., clicks, likes). A more
profound understanding requires modeling long-term, sequential dynamics.
How does a series of information exposures shape a user’s beliefs or habits
over months or years? This necessitates a shift from stateless to stateful user
models that capture evolving internal states (e.g., knowledge, preferences,
attitudes).

• Data-Efficient Behavioral Modeling: How can we develop accurate be-
havioral models in domains with scarce data? This involves exploring few-
shot, zero-shot, and transfer learning to leverage knowledge from data-rich
environments (e.g., social media) for data-poor contexts (e.g., public health
campaigns, niche product markets, or B2B interactions).
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Causality, Interpretability, and Intervention

• Integrating Causality into Predictive Models: A key frontier is the in-
tegration of causal inference with predictive modeling. Future work should
focus on hybrid models that combine the predictive power of large-scale
machine learning with the explanatory power of causal reasoning. This
could involve techniques for automatically identifying and leveraging nat-
ural experiments within massive datasets or developing architectures that
learn causal graphs from observational and interventional data, moving from
’what’ users will do to ’why’ they do it.

• From Prediction to Automated Intervention: How can we build sys-
tems that move beyond passive prediction to actively recommend or per-
form interventions that achieve specific behavioral outcomes? This requires
developing frameworks that can optimize for long-term goals (e.g., user well-
being, sustained engagement, public health adherence) in complex, dynamic
environments, while navigating the ethical considerations of such automated
influence.

• Generating Persuasive and Trustworthy Explanations: Beyond pre-
dicting behavior, can we generate faithful explanations for *why* people act
as they do? Furthermore, can we design models whose own recommenda-
tions are accompanied by explanations that are not only interpretable but
also persuasive and trust-inspiring? How can we measure the behavioral
impact of such machine-generated explanations?

Ethical and Societal Considerations

• Ethical Frameworks for Persuasive Technologies: As AI systems be-
come more persuasive, it is imperative to develop robust ethical frameworks
to guide their deployment. An actionable research direction is the creation
of ’Constitutional AI’ for persuasion, where models are trained to adhere to
auditable ethical principles (e.g., transparency, fairness, respect for auton-
omy), co-developed with ethicists, psychologists, and policymakers.

• Quantifying and Mitigating Manipulation Risk: How can we quanti-
tatively measure the ’manipulation potential’ of a behavioral model? Can
we develop adversarial training techniques, formal verification methods, or
auditing protocols to build models that are robust against misuse for mali-
cious influence while preserving their beneficial capabilities?

• Building and Validating Digital Societies: How can we construct and
validate large-scale, multi-agent simulations of digital societies to study
emergent social phenomena? Research is needed to model phenomena like
opinion polarization and information cascades, and to ethically test the im-
pact of potential policy or platform design interventions in these simulated
worlds.
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Bridging Theory, Practice, and People

• Cross-Cultural and Demographic Generalization: How do we ensure
that behavioral models are fair and generalize across diverse cultures, lan-
guages, and demographic groups? This requires creating new benchmark
datasets that capture global diversity and developing methods to detect and
mitigate biases present in training data.

• Theory-Driven and Interdisciplinary Modeling: How can we more
deeply integrate established theories from psychology, sociology, and eco-
nomics into data-driven models? This involves creating systems that are not
only empirically powerful but also scientifically grounded and interpretable,
fostering collaborative frameworks that bridge the gap between social science
theory and AI practice.

• Real-World Validation and Deployment: How can we establish effec-
tive partnerships to validate and deploy behavioral models in real-world set-
tings while maintaining academic rigor and ethical standards? This includes
developing best practices for collaboration between academia, industry, and
government to ensure that research translates into responsible and beneficial
applications.

Finally, as we stand at the cusp of what we identified as the fourth major phase

in the study of communication, driven by unprecedented access to digital content

and behavioral data, we should remember these sayings:

We’re actually much better at planning the flight path of an interplanetary

rocket (rocket science) than we are at managing the economy, merging two corpo-

rations, or even predicting how many copies of a book will sell (behavior prediction).

So why is it that rocket science seems hard, whereas problems having to do with

people - which arguably are much harder - seem like they ought to be just a matter

of common sense (easily predictable)? - Duncan J. Watts

And,

Nothing in Nature is random (unpredictable). A thing appears random only

through the incompleteness of our knowledge (ignorance). - Baruch Spinoza

Further, as we reflect on the scientific and empirical challenges to the notion

of free will, it is instructive to recognize that these questions have been deeply

explored in philosophical and religious traditions for millennia. The Bhagavad

Gita, a foundational text of Indian philosophy, offers a profound perspective on

agency and action. It suggests that what we perceive as free will may, in fact, be

shaped by forces beyond our conscious control—nature, past experiences, and even
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the divine. This resonates with the findings we have made in this thesis, as well

as the findings of modern behavioral science and neuroscience, which increasingly

point to the limits of conscious agency.

For example, in Chapter 3, Verse 27, the Gita states:

“Prakṛteḥ kriyamāṇāni guṇaiḥ karmāṇi sarvaśaḥ; Ahaṅkāra-vimūḍhātmā

kartāham iti manyate.”

“All actions are performed by the modes of material nature, but a person

deluded by false identification with the ego thinks, ‘I am the doer.’ ”

And in Chapter 11, Verses 33 and 34, Krishna tells Arjuna:

“droṇaṁ cha bhīṣhmaṁ cha jayadrathaṁ cha karṇaṁ tathānyān api

yodha-vīrān mayā hatāṁs tvaṁ jahi mā vyathiṣhṭhā yudhyasva jetāsi

raṇe sapatnān”

“Drona, Bhishma, Jayadratha, Karna, and other great warriors have already

been killed by Me. You only be an instrument (nimitta) in the fight.”

These verses articulate a philosophy of action that acknowledges the limits of

personal agency and encourages detachment from the fruits of action. The Gita’s

perspective is not one of fatalism, but rather an invitation to act with awareness of

the larger forces at play—recognizing that while we must act, we are not the sole

authors of our actions. This ancient wisdom aligns with contemporary scientific

insights, suggesting the nature, causes, and limits of human agency.
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3.1 Behavior Simulation. Mean RMSE and accuracy scores for

scene-by-scene predictions of video replay values. Replay values are

the normalized replay scores of each scene as provided by YouTube.

The normalized scores are considered to 2 decimal places and mul-

tiplied by hundred to convert the score to an integer score in the

range 0-100. RMSE is calculated for each video in the test set and

the mean is calculated for this score and reported. The model is

said to classify correctly if the absolute error between the predicted

and ground truth value is less than or equal to 5. The scores are

calculated in four regimes: past, future, random, and all-masked.

In the past (future) regimes, first (last) 5-20% scenes are masked;
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all masked setting, everything is masked. LCBM was behavior-

fine-tuned (BFT) with 3,5,7,11 context window masking strategy,

while GPT was compared with an in-context learning (ICL) set-
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better than the one trained only on Twitter, showing signs of per-

formance improvement by domain adaptation. . . . . . . . . . 110

3.4 Content Simulation and Behavior Domain Adaptation‡.

Given behavior, channel, time, tweet media caption as prompt, pre-

dict content (tweet text). We note that LCBM trained on Twitter

and YouTube performs better than the one trained only on Twitter,

showing signs of performance improvement by domain adaptation.
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3.5 Content Simulation. In this task, the models have to choose the
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non-masked scenes. and replay behavior. We see that despite be-
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models are denoted in green and runner-ups in blue . . . . . . 112
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ulate the sentiment of comments that a video would get by looking

at only the video. Further, they also have to explain the reason

for such sentiment. The responses were annotated by humans on a

scale of 0-5 for the reason, with 0 being no response provided and

5 being the response matches exactly with the (ground truth) com-

ments received on the video. Best models are denoted in green

and runner-ups in blue . . . . . . . . . . . . . . . . . . . . . . 112

3.7 Behavior Simulation. RMSE, R2, and accuracy scores for like/view

ratio prediction task. To calculate accuracy, the model is said to

classify correctly if the absolute error between the predicted and

ground truth likes/views is less than or equal to 10%. BFT de-

notes behavior fine-tuning, and ICL stands for in-context learning.

Replay values k-masked means a model which is trained by masking

k consecutive values of the replay graph while doing BFT. We note

that LCBM while being at least 10x smaller than the other models,

performs the best. The best results over four runs are reported for

all models. Best models are denoted in green and runner-ups in

blue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

3.8 Content Understanding. Comparison of several models, includ-

ing behavior instruction tuned models before and after BFT. We

compare the models across topic, emotion, and persuasion strategy

detection tasks as per the framework given by Bhattacharyya et al.

(2023). We see that our model outperforms similarly sized models

(Vicuna, VideoChat) in most tasks. Best models are denoted in

green and runner-ups in blue . . . . . . . . . . . . . . . . . . . 114
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3.9 Behavior Domain Adaptation. We test the generalization ca-

pability of LCBM on two tasks: (1) Behavior simulation on in-

house Email Marketing Data, (2) Behavior simulation on the LVU

benchmark. For (1), we train two versions of LCBM with the in-

house Email Marketing data: one was trained on YouTube videos

and further BFT on a few email samples (domain-adapted), and

the other was BFT on a larger set of emails, but not including

YouTube data (in-domain)§. We report the RMSE and R2 scores

for this task. For (2), we compare LCBM with other state-of-the-

art results and GPT-3. In (1), we note that the domain-adapted

LCBM performs better than the in-domain LCBM in both settings.

We posit that YouTube data helps LCBM understand how a com-

pany’s viewers like to hear from it, giving LCBM an edge over a

model trained on a small amount of the same data (600 unique

emails). In (2), LCBM performs better than the existing state-

of-the-art. Surprisingly, GPT-3.5 does better than LCBM on this

task. From both (1) and (2), we gather that a model trained on cer-

tain YouTube behaviors performs better on other behaviors, thus

showing promise of domain-adaptation in the behavior modality.
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4.11 Comparison of various models on two video understanding bench-

marks (Hussain et al., 2017; Kumar et al., 2023b) consisting of
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goal of comparing on these benchmarks is to demonstrate Behavior-

LLaVA’s understanding of complex videos. We see that Behavior-

LLaVA improves on LLaMA-Vid on 5/5 tasks with an average im-

provement score of 43.18% in zero-shot and 27.64% in fine-tuned

settings. Further, it outperforms the current state-of-the-art on 3/5
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4.14 Comparison of various models on the image dense captioning task.
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4.18 Improvement on downstream content understanding tasks by in-

troducing more behaviour signals. Brackets [] denote the new be-

haviour that we include. Replay graphs (Khandelwal et al., 2024).

Mem-Recalls (SI et al., 2025) Evaluation done on Multi-shot video

summarization (Han et al., 2023) and MomentDETR (Lei et al.,
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5.1 Comparison of all the major (image and video) memorability datasets

available in the literature along with LAMBDA (ours). The datasets

are compared on the following axes: number of samples, type of

memorability (short-term (ST) and long-term (LT)), memory re-
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sistency achieved in the study, and the protocol followed in the

study to collect the data. Memento10k - (Newman et al., 2020),

VideoMem - (Cohendet et al., 2019), LaMem - (Khosla et al.,

2015), SUN - (Isola et al., 2011), MemCat - (Goetschalckx and

Wagemans, 2019), MediaEval - (Kiziltepe et al., 2021b) . . . . 192

5.2 Results of Henry (our model) on eight datasets compared with

the current best models reported in the literature and GPT-3.5.

Human consistency values are also listed in the top row for ref-

erence. It can be observed that our model achieves state-of-the-

art performance across all datasets. Best models are denoted in
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5.3 Ad Generation: Results of Henry-SEED compared with in-context-

learning (ICL) GPT-3.5, 4 on Ad-Memorability and Ad generation

quality. See §5.1.5 for details of the metrics computed. We see that

Henry-SEED generated ads are more memorable than ads gener-

ated using 15x larger GPT-3.5 and GPT-4. We test ad quality

using GPT-4 as judge and then test the top-two models using hu-

man annotators. GPT-4 as a judge rates GPT-4 and Henry-SEED

as the top two models. Subsequently, we ask humans to select

between the original and generated ad stories. We observed that

human annotators preferred Henry-SEED ads more than the orig-

inal ads 3/5 times, while GPT-4 generated ads are preferred 2/5

times over the original ads. Further, we note that an increase in the

amount of training data for Henry-SEED increases its performance

across all metrics. Figs. 5.4-5.6 and Listings 5.1-5.10 contain some

qualitative samples generated using Henry-SEED. . . . . . . . 208

5.4 Ad Generation: Perplexity comparison (refer §5.1.11) of LLaVA

and Henry-SEED on low/medium/high memorable ads from LAMBDA
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ads. Further, we note that when synthetic data is included during

training, the ratio of perplexity on low and high ads grows from

2.79 to 3.01. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

316



5.5 To augment the scene understanding of LLM, we verbalize video

scenes and images using a diverse set of cognitive and perception

tools and pass it to the LLM in the format shown in the table.

For image memorability datasets, we use the following semantic

categories: caption, color, photo style, emotion, clutter, human

presence, object tags, OCR, and aesthetics. For video scene memo-

rability datasets, we use the following semantic categories: caption,

color, emotion, human presence, object tags, ASR, OCR, Audio-

type, Logo-presence. We use the following models to extract the

features: OCR (Du et al., 2020), clutter (Khurana et al., 2023),

ASR (Radford et al., 2022), Photo style (Li et al., 2023b), human

presence (Liu et al., 2023c), emotion (Singh et al., 2024a), cap-

tion (Li et al., 2023b), aesthetics (Ke et al., 2023), colors (Qin

et al., 2020a), object tags (Zhang et al., 2023c), audio-type (Gian-

nakopoulos, 2015), and logo presence (Zhang et al., 2023c). Black

colored text is the verbalization template, and red text indicates

the model outputs. . . . . . . . . . . . . . . . . . . . . . . . . 223

5.6 Ablation across data to understand how memorability prediction

generalizes across the type of memory, datasets, modality (im-

age/video), and brands. The reported values are correlations be-

tween model and human memorability scores. A few trends can

be observed from the table: (i) STM generalizes better on LTM in

zero-shot than vice versa (rows 1 and 2), (ii) Henry trained on either

videos or images generalizes to both (rows 3 and 4), (iii) There is

a significant performance loss in modeling memorability for brands

not seen during training (row 5), (iv) Zero-shot generalization to

Memento (video) and Memcat (image) is near to the current trained

state of the art literature models on Memento (Dumont et al., 2023)

and Memcat (Hagen and Espeseth, 2023) (rows 6 and 7). . . . . 225
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5.7 Ablation across architectural choices. “-” denotes non-speech dataset.

A few trends are visible from the table: (i) Despite having a vi-

sion branch, object tags and colors have a net positive impact

on the overall performance (rows 2,3,4), (ii) For LTM (LAMBDA,

VideoMem (LT)), dropping cognitive features such as emotion, aes-
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5.21 Any message is created to serve an end goal. For marketers, the end

goal is to bring in the desired receiver effect (behavior) (like clicks,
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5.25 Aligning Stable Diffusion for higher engagement using DDPO al-

gorithm (Black et al., 2023) using Engagement Simulation (ES)

as the reward function. Architecture of the proposed pipeline for

training stable diffusion for the objective of engagement-optimised
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ward function as described in Section 5.2.4.3. EngageNet predicts
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5.26 Aligning Stable Diffusion for higher engagement using DDPO algorithm
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